1,800 research outputs found

    Identification of Hysteresis in Human Meridian Systems Based on NARMAX Model

    Get PDF
    It has been found that the response of acupuncture point on the human meridian line exhibits nonlinear dynamic behavior when excitation of electroacupuncture is implemented on another meridian point. This nonlinear phenomenon is in fact a hysteretic phenomenon. In order to explore the characteristic of human meridian and finally find a way to improve the treatment of diseases via electro-acupuncture method, it is necessary to identify the model to describe the corresponding dynamic hysteretic phenomenon of human meridian systems stimulated by electric-acupuncture. In this paper, an identification method using nonlinear autoregressive and moving average model with exogenous input (NARMAX) is proposed to model the dynamic hysteresis in human meridian. As the hysteresis is a nonlinear system with multivalued mapping, the traditional NARMAX model is unavailable to it directly. Thus, an expanded input space is constructed to transform the multi-valued mapping of the hysteresis to a one-to-one mapping. Then, the identification method using NARMAX model on the constructed expanded input space is developed. Finally, the proposed method is applied to hysteresis modeling for human meridian systems

    Cross-linked CoMoO4/rGO nanosheets as oxygen reduction catalyst

    Get PDF
    Development of inexpensive and robust electrocatalysts towards oxygen reduction reaction (ORR) is crucial for the cost-affordable manufacturing of metal-air batteries and fuel cells. Here we show that cross-linked CoMoO4 nanosheets and reduced graphene oxide (CoMoO4/rGO) can be integrated in a hybrid material under one-pot hydrothermal conditions, yielding a composite material with promising catalytic activity for oxygen reduction reaction (ORR). Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to investigate the efficiency of the fabricated CoMoO4/rGO catalyst towards ORR in alkaline conditions. The CoMoO4/rGO composite revealed the main reduction peak and onset potential centered at 0.78 and 0.89 V (vs. RHE), respectively. This study shows that the CoMoO4/rGO composite is a highly promising catalyst for the ORR under alkaline conditions, and potential noble metal replacement cathode in fuel cells and metal-air batteries

    The genome of the Tiger Milk mushroom, Lignosus rhinocerotis, provides insights into the genetic basis of its medicinal properties

    No full text
    BACKGROUND The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden or Tiger milk mushroom (Polyporales, Basidiomycota) is a valuable folk medicine for indigenous peoples in Southeast Asia. Despite the increasing interest in this ethnobotanical mushroom, very little is known about the molecular and genetic basis of its medicinal and nutraceutical properties. RESULTS The de novo assembled 34.3 Mb L. rhinocerotis genome encodes 10,742 putative genes with 84.30% of them having detectable sequence similarities to others available in public databases. Phylogenetic analysis revealed a close evolutionary relationship of L. rhinocerotis to Ganoderma lucidum, Dichomitus squalens, and Trametes versicolor in the core polyporoid clade. The L. rhinocerotis genome encodes a repertoire of enzymes engaged in carbohydrate and glycoconjugate metabolism, along with cytochrome P450s, putative bioactive proteins (lectins and fungal immunomodulatory proteins) and laccases. Other genes annotated include those encoding key enzymes for secondary metabolite biosynthesis, including those from polyketide, nonribosomal peptide, and triterpenoid pathways. Among them, the L. rhinocerotis genome is particularly enriched with sesquiterpenoid biosynthesis genes. CONCLUSIONS The genome content of L. rhinocerotis provides insights into the genetic basis of its reported medicinal properties as well as serving as a platform to further characterize putative bioactive proteins and secondary metabolite pathway enzymes and as a reference for comparative genomics of polyporoid fungi.This research is supported by High Impact Research Grant UM.C/625/1/HIR/ MoE/E20040-20001 from the University of Malaya/Ministry of Education, Malaysia. H-YYY is supported by the postgraduate research grant (PPP) PV024/ 2012A from University of Malaya, Malaysia. Y-HC is a recipient of Australian Research Council Discovery Early Career Researcher Award (ARC DECRA)

    The genome of the Tiger Milk mushroom, Lignosus rhinocerotis, provides insights into the genetic basis of its medicinal properties

    Get PDF
    BACKGROUND: The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden or Tiger milk mushroom (Polyporales, Basidiomycota) is a valuable folk medicine for indigenous peoples in Southeast Asia. Despite the increasing interest in this ethnobotanical mushroom, very little is known about the molecular and genetic basis of its medicinal and nutraceutical properties. RESULTS: The de novo assembled 34.3 Mb L. rhinocerotis genome encodes 10,742 putative genes with 84.30% of them having detectable sequence similarities to others available in public databases. Phylogenetic analysis revealed a close evolutionary relationship of L. rhinocerotis to Ganoderma lucidum, Dichomitus squalens, and Trametes versicolor in the core polyporoid clade. The L. rhinocerotis genome encodes a repertoire of enzymes engaged in carbohydrate and glycoconjugate metabolism, along with cytochrome P450s, putative bioactive proteins (lectins and fungal immunomodulatory proteins) and laccases. Other genes annotated include those encoding key enzymes for secondary metabolite biosynthesis, including those from polyketide, nonribosomal peptide, and triterpenoid pathways. Among them, the L. rhinocerotis genome is particularly enriched with sesquiterpenoid biosynthesis genes. CONCLUSIONS: The genome content of L. rhinocerotis provides insights into the genetic basis of its reported medicinal properties as well as serving as a platform to further characterize putative bioactive proteins and secondary metabolite pathway enzymes and as a reference for comparative genomics of polyporoid fungi. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-635) contains supplementary material, which is available to authorized users

    The effect of different baryons impurities

    Full text link
    We demonstrate the different effect of different baryons impurities on the static properties of nuclei within the framework of the relativistic mean-field model. Systematic calculations show that Λc+\Lambda_c^+ and Λb\Lambda_b has the same attracting role as Λ\Lambda hyperon does in lighter hypernuclei. Ξ\Xi^- and Ξc0\Xi_c^0 hyperon has the attracting role only for the protons distribution, and has a repulsive role for the neutrons distribution. On the contrary, Ξ0\Xi^0 and Ξc+\Xi^+_c hyperon attracts surrounding neutrons and reveals a repulsive force to the protons. We find that the different effect of different baryons impurities on the nuclear core is due to the different third component of their isospin.Comment: 9 page

    Longan seed and mangosteen skin based activated carbons for the removal of Pb(II) ions and rhodamine-B dye from aqueous solutions

    Get PDF
    Agricultural biomass wastes of longan seed and mangosteen skin were collected as precursors to prepare activated carbons (LS-AC-5 and MS-AC-5, respectively) through carbonization at medium temperature and KOH activation at high temperature. Their pore structures, structural properties and surface morphologies were characterized by X-ray diffractometer, Brunauer–Emmett–Teller surface measurement system, and scanning electron microscopy, respectively. Effects of contact time and pH on adsorption performances of samples were investigated by removal of Pb(II) ions and Rhodamine-b from aqueous solutions. Experimental adsorption isotherms of Rhodamine-b and Pb(II) ions on LS-AC-5 and MS-AC-5 fitted well with the Langmuir model. Results further showed that MS-AC-5 exhibited a larger surface area of 2960.56 m2/g and larger portions of micropores and mesopores (pore volume of 1.77 cm3/g) than LS-AC-5 (surface area: 2728.98 m2/g; pore volume: 1.39 cm3/g). Maximum monolayer adsorption capabilities of 1265.82 and 117.65 mg/g for Rhodamine-b and Pb(II) ions on MS-AC-5 were higher than those on LS-AC-5 (1000.20 and 107.53 mg/g), respectively
    corecore