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Agricultural biomass wastes of longan seeds and mangosteen skins were collected for 

precursors to prepare activated carbon through medium-temperature carbonization 

and KOH activation at high temperature. Pore structure, structural properties, and 

surface morphology were characterized by X-ray diffraction, 

Brunauer–Emmett–Teller surface measurement, and scanning electron microscopy. 

Effects of contact time and pH on the adsorption performances of samples were 

investigated by the remediation of lead and Rhodamine-B from aqueous solution. The 

experimental adsorption isotherms of Rhodamine-B and Pb(II) ions on LS-AC-5 and 

MS-AC-5 well fitted the Langmuir model. Results further showed that MS-AC-5 had 

a larger surface area of 2960.56 m2/g and larger portion of micropore and mesopore 

(1.77 cm3/g) than LS-AC-5 (2728.98 m2/g and 1.39 cm3/g, respectively). The 

maximum monolayer adsorption capability (1265.82 and 117.65 mg/g) of 

Rhodamine-B and Pb(II) ions on MS-AC-5 were higher than those on LS-AC-5 

(543.48 and 107.53 mg/g, respectively). 
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1. Introduction 

The rapid growth of developing countries has accelerated the process of water 

pollution. Millions of tons of wastewater discharged by mills each year contain 

chemicals, such as heavy metals and dyes. These chemicals, which are a problem 

affecting economic and ecological system around the world, cause both 

environmental damage and human disease. Various treatment techniques have been 

used to control the effluents released from mills, such as adsorption [1], membrane 

filtration [2], ion exchange [3], reverse osmosis [4], advanced oxidation [5], 

electrochemical methods, precipitation, and coagulation techniques [6]. However, 

these methods differ in their efficiency, cost, and environmental impact. Adsorption 

has long been considered as a highly efficient approach for pollution control. The 

main adsorption mechanisms are based on surface forces, complexation, and ion 

exchange mechanisms [7]. Various adsorbents, such as carbon-based nanomaterials 

[8], zeolite [9], resin [10], MOFs [11], clay minerals [12], and porous silica [13], have 

been developed for the removal of contaminants from wastewater due to the 

availability of various types and their high efficiency in removal of organic and 

inorganic pollutants.  

Among all the adsorbents, nanostructured porous carbons are of great interest in 

view of their large surface areas, well-developed pore structures, surface properties, 

high adsorbing capacity, eco-friendly, cost feasibility, and excellent thermochemical 

stability. Porous carbons obtained from agricultural biowastes are attracting 

considerable attention due to the fact that agricultural wastes are recyclable, 

inexpensive, and abundantly available compared with non-renewable coal-based 

activated carbons. Besides the inherent advantages of abundance and low cost, 

agricultural biowastes mainly consisting of cellulose, lignin, and hemicelluloses also 

render them good sources of raw materials for the production of activated carbon 

adsorbents. The utilization of biomass waste for producing porous carbon 

simultaneously offers a solution for comprehensive and high-value utilization and 

approving the agricultural waste management. Several research have been reported on 

porous carbon materials from agricultural wastes, including coconut shell, seaweeds, 
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corn cob, rice husk, palm shell, tree leaves, bamboo debris, sugarcane bagasse, fish 

scale, animal bone, chicken feather, and so on [14–17].  

The lead pollution in wastewater originates mostly from mining, smelting, 

lead-acid batteries manufacturing, metal plating and finishing, printing, ceramics, and 

glass industries. In the past episodes, significant concerns have been raised over lead 

contamination in the aquatic environment and the awareness about their toxicity has 

been dramatically increased. Lead has been proved to be one of the most toxic heavy 

metals and classified as a human carcinogen with permissible level of 0.015 mg/L in 

drinking water [18]. Therefore, to develop effective activated carbon absorbents to 

eliminate lead ions from wastewaters is of great demand. Papaya peel was utilized to 

prepare a novel activated carbon showing a high adsorption capacity for 200 mg/L 

Pb(II) with a removal rate of 93% in 2 h, where the adsorption data were consistent 

with both Langmuir and Freundlich adsorption models [19]. Sugarcane bagasse was 

combined with sludge to produce a low-cost porous carbon adsorbent successively 

through KOH activation and HNO3 oxidation for Pb(II) ions with great adsorption 

capacity [20]. Three activated carbon samples produced from guava seeds, tropical 

almond shells, and dindé stones were investigated for the remediation of lead from 

water with a maximum amount of lead adsorbed as high as 50 mg/g (dindé stones), 96 

mg/g (gava seeds), and 112 mg/g (almond shells), respectively [21]. Olive 

stone-derived microporous activated carbon is of largest adsorption capacity for 

removing Pb(II) in comparison with Cu(II) and Cd(II) from single and binary aqueous 

solutions via the batch technique [22]. 

Rhodamine-B is a cationic xanthene dye widely used as a colorant in the printing, 

textile dyeing, paint industries, and photographic industries [23]. However, this dye 

inherently possesses carcinogenicity, neurotoxicity, chronic toxicity, and reproductive 

toxicity towards humans and animals [24]. Thus, treating dyeing wastewater and 

solving water pollution are important. Although dyes in wastewater are difficult to 

remove due to their complex composition and inert properties, activated carbon 

adsorption is a particularly effective approach. Activated carbons were developed 

from a low-cost aquatic plant residue of Lythrum salicaria L. and tested for their 
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ability to remove rhodamine-B from aqueous solutions, where the maximum 

adsorption capacity derived from Langmuir model reached a value of 384.62 mg/g 

[25]. The by-products from woody biomass gasification were also utilized to prepare 

activated carbon via steam activation for the adsorption of Rhodamine-B dye. The 

adsorption isotherms well fit the Langmuir model with a maximum monolayer 

adsorption capability of 189.83 mg/g [26]. Similarly, rice husk-based activated carbon 

was also shown to be a promising adsorbent for removal of Rhodamine-B from 

aqueous solution and exhibited maximum monolayer adsorption capacity 518.1 mg/g 

[27]. 

The present study aims to produce activated carbon from agricultural biowastes of 

longan seed and mangosteen skin by KOH activation for the remediation of lead and 

Rhodamine-B from aqueous solution. The adsorption potential of two 

biomass-derived porous carbon for removal of lead and Rhodamine-B was evaluated 

in terms of the physicochemical characteristics of the porous carbon and the operating 

conditions. Finally, the adsorption equilibrium was also explored and fitted by 

Langmuir adsorption model.  

 

2. Materials and methods  

2.1. Materials 

Chemical reagents that were used in this study were available commercially. KOH 

(AR; ≥85.0% purity) and HNO3 (AR; 65%) were purchased from Tianjin Kemiou 

Chemical Reagent Co., Ltd. Longan seed and mangosteen skin were collected from a 

fruit trading center at Guangzhou.  

 

2.2. Synthesis of activated carbons 

Longan seed and mangosteen skin were firstly washed by deioinized water, then 

dried at 105 °C in an oven for 24 h and finally pulverized to biomass powders by an 

electric pulverizer. The resultant agricultural biomass powders were then transferred 

into corundum boats preliminarily heated by an atmosphere tubular furnace to the 

target temperature 450 °C at a heating rate of 3 °C/min under Ar atmosphere (flow 
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rate of 20 mL/min) and held at 450 °C for 120 min. The as-prepared biochar was 

gridded and then homogeneously mixed with solid KOH at different weight ratios 

(1:1, 1:4, and 1:5). Thereafter, the mixtures were loaded into a nickel combustion boat 

and activated in the Ar atmosphere furnace at 800 °C for 2 h with a heating rate of 

3 °C/min and flow rate of 20 mL/min. Afterwards, the activated samples were 

alternatively washed several times with by 15% HNO3 and deionized water to remove 

any inorganic salts or a residue KOH and dried at 110 °C for 12 h. Finally, the 

as-prepared activated porous carbons were denoted as LS-AC-x and MS-AC-x, 

separately, where LS and MS refer to longan seed and mangosteen skin, respectively; 

AC for activated carbon, x for the weight ratio of biochar to solid KOH.  

 

2.3. Characterization methods 

The X-ray diffraction (XRD) patterns were collected using a Bruker D8 advance 

diffractometer with monochromatic Cu Kα radiation (40 kV, 20 mA) covering 2θ 

regions from 10° to 80°. The specific surface area of the resultant porous carbons was 

obtained from N2 adsorption–desorption isotherms on the Micromeritics ASAP 2020 

Brunauer–Emmett–Teller (BET) apparatus at liquid nitrogen temperature (77 K). A 

hybrid nonlocal density functional theory (NLDFT) method was used to investigate 

the pore size distributions based on the N2 adsorption isotherms by assuming slit pore 

geometry for the micropores and cylindrical pore geometry for the mesopores. The 

nanostructures of the longan seed- and mangosteen skin-derived porous carbons were 

investigated by field emission scanning electron microscopy (FE-SEM, ZEISS Ultra 

55).  

 

2.4. Adsorption experiments 

The influence of time on the adsorption performance was carried out by adding 20 

mg of LS-AC-5 and MS-AC-5 into 100 mL Rhodamine-B solution of 200 mg/L and 

Pb(II) solution of 10 mg/L under vigorous stirring, separately. The samples were taken 

at different time intervals in 120 min and analyzed by a UV/vis spectrophotometer 

(UV-1800, Shimadzu Corporation) at wavelength 554 nm and an atomic absorption 
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spectrophotometer (TAS-986, Beijing Persee Corporation) after filtration using 0.45 

µm-syringe filters. The effect of the initial solution pH on the adsorption was 

evaluated by adjusting the initial pH solutions with 0.1 M KOH or 0.1 M HNO3 to 

range within 3.0 to 9.0. Batch isotherm sorption experiments were performed by a 

series of adsorption using 100 mL Rhodamine-B solutions (20–2000) mg/L and 100 

mL Pb(II) solutions (5–100 mg/L) in the presence of 20 mg of LS-AC-5 and 

MS-AC-5 under vigorous stirring, respectively. The concentrations of the samples 

were analyzed after 18 h. Langmuir model was used to simulate the adsorption 

processes. The Langmuir isotherm is applicable to monolayer adsorptions on 

energetically heterogeneous surface; it can be expressed as following Equation (1): 
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where Qe (mg/g) is the equilibrium adsorption capacity, Ce (mg/L) is equilibrium 

concentration, Qm (mg/g) is the maximum adsorption capacity, and KL is equilibrium 

adsorption constant for Langmuir model.  

 

3. Results and discussion 

FE-SEM images of microstructures of LS-AC-1, LS-AC-4, LS-AC-5, MS-AC-1, 

MS-AC-4, and MS-AC-5 carbons are shown in Fig. 1. Figs. 1a and 1d show that at a 

low ratio of KOH to biochar, the porous carbons are dominated by macropores for the 

two types of porous carbons. For longan seed-derived porous carbons, a number of 

mesopores/micropores are generated in the nested cavities on the surfaces as the 

increasing ratios of KOH activating agent to biochar from Figs. 1a to 1c. However, 

mangosteen skin-derived porous carbons exhibit a different morphology that is 

featured by an increasing irregular nanosheet as the ratio of KOH to biochar increases 

as shown in Figs. 1d to 1f. These results indicate that a significant improvement of 

meso/microporous morphology has occurred in the KOH activation process which 

leads to a substantial number of porosity comprised of randomly oriented microspores 

or nanosheets.  
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Figure 2 shows the XRD patterns of the as-synthesized LS-AC-1, LS-AC-4, 

LS-AC-5, MS-AC-1, MS-AC-4, and MS-AC-5. As the ratio of KOH to carbon 

increases, the diffraction peaks located at 2θ=26° and 43° corresponding to (002) and 

(100) planes exhibit a reduced intensity and a broadened property; this result suggests 

that stronger activator leads to a higher percentage of amorphous structure due to the 

breakdown of graphitic crystalline structures during chemical activation. 

As shown in Fig. 3, nitrogen adsorption–desorption isotherms were used to 

investigate the BET surface area and porosity of longan seed- and mangosteen 

skin-derived porous carbons. LS-AC-1, LS-AC-4, LS-AC-5, MS-AC-1, MS-AC-4, 

and MS-AC-5 exhibit type-I N2 adsorption isotherm showing a steep nitrogen gas 

uptake at lower relative pressure (P/P0  <  0.01) and a plateau in the intermediate 

pressure section; these results indicate that a microporous nature with a small degree 

of mesoporosity. Hybrid NLDFT model was used to determine the pore size 

distribution and total pore volumes by assuming cylindrical-pore geometry for the 

mesopores and slit-pore geometry for the micropores according to the N2 isotherm 

adsorption data. Table 1 summarizes the specific surface area and pore structure of 

samples activated with different ratios of biochar to KOH. On one hand, for LS-AC, 

as the ratio of KOH to biochar was increased, the total pore volume increased from 

0.47 cm3/g to 1.39 cm3/g, BET surface area increased from 803.51 m2/g to 2728.98 

m2/g, and average pore size decreased from to 2.36 nm to 2.04 nm. On the other hand, 

for MS-AC, as the ratio of KOH to biochar was increased, the total pore volume 

increased from 0.51 cm3/g to 1.77 cm3/g, BET surface area increased from 940.24 

m2/g to 2960.56 m2/g, and average pore size decreased from to 2.19 nm to 1.93 nm. 

These changes are attributed to presence of the more activating agents that are 

accessible to react with biochar to facilitate the formation of abundant micropores. All 

the samples exhibited a random pore size distribution with several representative 

peaks centering in the range of <5 nm. With increased percentage of activating agent, 

agricultural biomass-derived porous carbons contain a structure that is predominantly 

micropore with peaks center at 1.1, 0.5, and 1.2 nm for LS-AC-5 and MS-AC-5.  

The removal rate (%) of Rhodamine-B and Pb(II) ions on LS-AC-5 and MS-AC-5 
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as a function of contact time is presented in Figs. 4a and 5a. The removal rate of 

Rhodamine-B was gradually increased with the adsorption time from 22.86% to 

76.78% on LS-AC-5 and from 28.59% to 83.16% on MS-AC-5 in 120 min. Pb(II) 

ions was removed greatly from the aqueous solution at the beginning (<5 min) due to 

the high surface areas and large amount of unoccupied active sites (carboxyl and 

phenolic hydroxyl groups) on the porous carbons [28, 29]. Pb(II) ions adsorption from 

aqueous solutions by porous carbon was highly affected by solution pH. Figs. 4b and 

5b show that adsorption capacity increased with increased pH in the range of 3.0–7.0. 

As pH increases, the porous carbon surface becomes more and more negatively 

charged within the pH range which favourably led to higher adsorption capacity of 

cationic charged Pb(II) ions via electrostatic interaction. Analogously, adsorption 

value was relatively low at pH of 3, which can be attributed to electrostatic repulsion 

between cationic charged Pb(II) ions and the hydrogen ions that were released from 

phenolic hydroxyl groups in the adsorption process. However, the pH of the solution 

slightly influences Rhodamine-B adsorption process with the exception at high pH of 

9, which is inconsistent with adsorption behaviors on an adsorbent with very low 

surface area elsewhere [30], inferring that high surface area completely dominated 

during the adsorption compared to surface charge of the adsorbents. The comparison 

of adsorption isotherms of Rhodamine-B and Pb(II) ions on LS-AC-5 and MS-AC-5 

is shown in Figs. 4c and 5c. In Figs. 4d and 5d, the plots show that the values of the 

Langmuir isotherm model well fit the experimental data with square of correlations 

higher than 0.999 indicating a monolayer coverage of adsorbent surface [31]. The 

isotherm parameters for the Langmuir isotherm model are listed in Table 2. The 

equilibrium adsorption capacity (Qe, mg/g) of LS-AC-5 and for Rhodamine-B and 

Pb(II) ions are 543.48 and 107.53 mg/g, respectively, whereas that of MS-AC-5 are 

1265.82 and 117.65 mg/g, respectively. The removal efficiency of Rhodamine-B and 

Pb(II) ions on MS-AC-5 was higher than that of LS-AC-5 because of higher surface 

area and pore volume.  

 

4. Conclusions 
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Two types of activated carbons were prepared from fruit-biomass wastes by 

chemical activation with KOH. These activated carbons were characterized in terms 

of surface and structural properties and then used to remediate Rhodamine-B and 

Pb(II) in aqueous solutions. MS-AC had larger specific surface area, pore volume, 

and smaller average pore size than LS-AC. The experimental equilibrium curves of 

Rhodamine-B and Pb(II) on LS-AC-5 and MS-AC-5 well fitted the Langmuir 

isotherm model. MS-AC-5 had the highest adsorption capability for the removal of 

Rhodamine-B and Pb(II) ions from aqueous solutions, with maximum adsorption 

capacities of 1265.82 and 117.65 mg/g, which was mainly attributed to its higher 

surface area and more available micropore. The impact of solution pH on the 

adsorption amount of Pb(II) ions was markedly stronger than that of Rhodamine-B. 
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Figures 

 

 

Fig. 1 SEM images of LS-AC-1, LS-AC-4, LS-AC-5, MS-AC-1, MS-AC-4 and 

MS-AC-5, respectively.  

 

 

 

 

Fig. 2 XRD patterns of LS-AC-1, LS-AC-4, LS-AC-5, MS-AC-1, MS-AC-4 and 

MS-AC-5, respectively.  
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Fig. 3 Nitrogen adsorption-desorption isotherms (a, c) and pore size distribution (b, d) 

of longan seed and mangosteen skin derived porous carbons, respectively. 

 

 

 

Fig. 4 a) Effect of contact time of LS-AC-5 and MS-AC-5 for Rhodamine-B 

adsorption; b) Adsorption isotherms of Rhodamine-B on LS-AC-5 and MS-AC-5, 

respectively; c) Effect of pH on the removal of Rhodamine-B by LS-AC-5 and 

MS-AC-5; d) Langmuir fitted curves. 
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Fig. 5 a) Effect of contact time of LS-AC-5 and MS-AC-5 for Pb(II) ions adsorption; 

b) Adsorption isotherms of Pb(II) ions on LS-AC-5 and MS-AC-5, respectively; c) 

Effect of pH on the removal of Pb(II) ions by LS-AC-5 and MS-AC-5 ; d) Langmuir 

fitted curves. 

 

 

 

 

 

Fig. 6 Adsorption kinetics data and fitted models of a) Rhodamine-B and b) Pb(II) 

ions onto LS-AC-5 and MS-AC-5, respectively. 

 

 

 



 19 

Tables: 

 

Table 1 Specific surface area and pore structure of samples activated with different 

ratios of potassium hydroxide to biochar. 

Samples Surface area 

(m2.g-1) 

Pore volume 

(cm3.g-1) 

Average pore 

size (nm) 

LS-AC -1 803.51 0.47 2.36 

LS-AC -4 2038.74 1.15 2.09 

LS-AC -5 2728.98 1.39 2.04 

MS-AC -1 940.24 0.51 2.19 

MS-AC -4 2188.30 1.19 2.01 

MS-AC -5 2960.56 1.77 1.93 

 

 

 

Table 2 Isotherm adsorption parameters Rhodamine-B and Pb(II) ions on MS-AC-5 

and LS-AC-5, respectively.  

Model                Langmuir model                 Freundlich model 

             Qm (mg/g) KL (L/mg) R2            n  KF (mg1-1/n/g·L1/n)  R2                   

Pb(II) ions on LS-AC-5   107.53  2.04   0.9995           4.86    57.35   0.6735 

Pb(II) ions on MS-AC-5   117.65  3.33   0.9999           7.19    78.26   0.8877 

RB on LS-AC-5       1000.20  0.47   0.9994           12.44   322.14  0.4253 

RB on MS-AC-5        1265.82  0.69   0.9999           6.26    522.91  0.4144 

 

 

Table 3 Kinetic parameters for Rhodamine-B and Pb(II) ions adsorption on MS-AC-5 

and LS-AC-5, respectively.  

Kinetic model           Pseudo-first -order              Pseudo-second -order 

                k1 (min-1) qe (mg/g) R2         k1 (g/mg·min)  qe (mg/g)  R2                   

Pb(II) ions on LS-AC-5   0.5343  80.58   0.721         0.0309      81.65    0.813 

Pb(II) ions on MS-AC-5  0.5338  92.67   0.529          0.0235     94.19    0.807 

RB on LS-AC-5        0.0514  704.37  0.915      7.0968×10-5    835.87   0.978 

RB on MS-AC-5        0.0690  758.71  0.907       9.7796×10-5    876.62   0.985 

 


