50 research outputs found

    Stress and Deformation Analysis of Buried Gas Pipelines Subjected to Buoyancy in Liquefaction Zones

    Get PDF
    Buried pipelines are the main means of long distance transportation of natural gas. These pipelines are in high risk crossing liquefaction areas due to large deformations and stresses that may exist in pipe induced by the buoyancy load. In this study, a systematic analytical and numerical analysis were performed to investigate the mechanical behavior of a buried gas pipeline subjected to buoyancy in liquefaction areas. Soil constraints on pipe were considered accurately in the proposed models through soil spring assumptions. Effects of axial forces on pipe&rsquo s bending deformation were also considered via the governing equations for beam under bending and tension. Deformation compatibility condition was utilized to derive the axial forces in pipe. The accuracy of the proposed analytical model was validated by comparing its results with those derived by an established rigorous finite element model. In addition, parametric analysis was finally performed using the analytical model to study the influences of pipe diameter, pipe wall thickness, soil spring stiffness and width of liquefaction zone on pipe&rsquo s mechanical responses. This study can be referenced in the strength analysis and performance based safety evaluation of buried gas pipelines crossing liquefaction areas. Document type: Articl

    Numerical Analysis and Strength Evaluation of an Exposed River Crossing Pipeline with Casing Under Flood Load

    Get PDF
    Pipelines in service always experience complicated loadings induced by operational and environmental conditions. Flood is one of the common natural hazard threats for buried steel pipelines. One exposed river crossing X70 gas pipeline induced by flood erosion was used as a prototype for this study. A mechanical model was established considering the field loading conditions. Morison equations were adopted to calculate distributional hydrodynamic loads on spanning pipe caused by flood flow. Nonlinear soil constraint on pipe was considered using discrete nonlinear soil springs. An explicit solution of bending stiffness for pipe segment with casing was derived and applied to the numerical model. The von Mises yield criterion was used as failure criteria of the X70 pipe. Stress behavior of the pipe were analyzed by a rigorous finite element model established by the general-purpose Finite-Element package ABAQUS, with 3D pipe elements and pipe-soil interaction elements simulating pipe and soil constraints on pipe, respectively. Results show that, the pipe is safe at present, as the maximum von Mises stress in pipe with the field parameters is 185.57 MPa. The critical flow velocity of the pipe is 5.8 m/s with the present spanning length. The critical spanning length of the pipe is 467 m with the present flow velocity. The failure pipe sections locate at the connection point of the bare pipe and the pipe with casing or the supporting point of the bare pipe on riverbed

    Uber die Welch-Fraenkelschen Bazillen und ihre Verwandten im Darmkanal

    Get PDF
    Der Welch-Fraenkelsche Bazillus, der sich als ein Bodenbakterium weit im Boden verbreitet, ist obligater Anaerobier, und bekannt als Erreger des Gasoedems, welches eine chirurgisch und insbesonders kriegschirurgisch wichtige Wundinfektionskrankheit ist. Die Tatsache, dass dieses Stabchen nicht nur aus dem Boden, sondern auch aus menschlichem Darm gezuchtet wird, hat viele Autoren schon bisweilen beschaftigt. Dieser Bazillus ist Gram-positiv, gross und kraftig, abgerundet, unbeweglich und sporuliert nicht im gewohnlichen Nahrboden. Die Milch wurde sturmisch mit Gasbildung vergoren. Schon nach 20 Stunden schwamm das Kasein deutlich geschieden in truber, immer klarer werdender Molke. Die Kaseingerinnsel wurden ferner nicht wieder durch Peptonisierung gelost, noch kam es nach dem leicht sauerlich bleibenden Geruch zu Eiweissfaulniss. Die oben beschriebene Eigenschaft, die sog. Sturmische Gerinnung , ist charakteristisches Merkmal zur Diagnose-stellung des Welch-Fraenkelschen Bazillus. Der Verfasser hat aus 172 Faeces der Menschen 244 Stamme der Welch-Fraenkelschen Bazillen und 39 ahnliche Stamme, die von erstem Bazillus deutlich voneinander in Eigenstumlichkeit abweicht gezuchtet; d. h. dem Letzteren fehlt die sturmische Gerinnung. Diesen Bazillus nennt der Verfasser einen Verwandten der Welch-Fraenkelschen Bazillen , und vergleicht dieses Stabchen morphologisch und biologisch mit den Welch-Fraenkelschen Bazillen, welche er aus menschlichen Faeces und klassischem Gasoedem isoliert hat. Morphologie: Die Verwandten sind ebenso mit abgerundetem Ende 0.8-1.0μ breit, 4.0-1.0μ, nicht haufig 15μ in der Lange, zuweilen leicht gekrummt, und werden zarter als Welch-Fraenkelche Bazillen beobachtet. Sporen und Kapseln: Nicht nur in gewohnlichen Nahrboden, sondern auch in den alkalischen-, natriumphosphathaltigen Nahrsubstraten und im Hirnbrei nahm der Verfasser keine Sporen oder Kapseln wahr. Aber nur bei aus Gasoedem gezuchtetem Stamm beobachtete er beide im spezifischen antiserumhaltigen Nahrboden. Kolonientypen: Auf d

    Quercetin Alleviates Pulmonary Fibrosis in Mice Exposed to Silica by Inhibiting Macrophage Senescence

    Get PDF
    Quercetin exerts anti-inflammatory, anti-oxidant and other protective effects. Previous studies have shown that senescent cells, such as fibroblasts and type II airway epithelial cells, are strongly implicated in the development of pulmonary fibrosis pathology. However, the role of senescent macrophages during silicosis remains unclear. We investigated the effects of quercetin on macrophage senescence and pulmonary fibrosis, and explored underlying mechanisms. Mice were randomized to six model groups. Vitro model was also established by culturing RAW264.7 macrophages with silica (SiO2). We examined the effects of quercetin on fibrosis, senescence-associated β-galactosidase (SA-β-Gal) activity, and senescence-specific genes (p16, p21, and p53). We showed that quercetin reduced pulmonary fibrosis and inhibited extracellular matrix (ECM) formation. Quercetin also attenuated macrophage senescence induced by SiO2 both in vitro and in vivo. In addition, quercetin significantly decreased the expressions of the senescence-associated secretory phenotype (SASP), including proinflammatory factors (interleukin-1α (Il-1α), Il-6, tumor necrosis factor-α (TNF-α), and transforming growth factor-β1 (TGF-β1)) and matrix metalloproteinases (MMP2, MMP9, and MMP12). In conclusion, quercetin mediated its anti-fibrotic effects by inhibiting macrophage senescence, possibly via SASP

    Genomic monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates type I interferon response

    Get PDF
    The SARS-CoV-2 virus, the causative agent of COVID-19, is undergoing constant mutation. Here, we utilized an integrative approach combining epidemiology, virus genome sequencing, clinical phenotyping, and experimental validation to locate mutations of clinical importance. We identified 35 recurrent variants, some of which are associated with clinical phenotypes related to severity. One variant, containing a deletion in the Nsp1-coding region (D500-532), was found in more than 20% of our sequenced samples and associates with higher RT-PCR cycle thresholds and lower serum IFN-beta levels of infected patients. Deletion variants in this locus were found in 37 countries worldwide, and viruses isolated from clinical samples or engineered by reverse genetics with related deletions in Nsp1 also induce lower IFN-beta responses in infected Calu-3 cells. Taken together, our virologic surveillance characterizes recurrent genetic diversity and identified mutations in Nsp1 of biological and clinical importance, which collectively may aid molecular diagnostics and drug design.Peer reviewe

    Stress and Deformation Analysis of Buried Gas Pipelines Subjected to Buoyancy in Liquefaction Zones

    Get PDF
    Buried pipelines are the main means of long distance transportation of natural gas. These pipelines are in high risk crossing liquefaction areas due to large deformations and stresses that may exist in pipe induced by the buoyancy load. In this study, a systematic analytical and numerical analysis were performed to investigate the mechanical behavior of a buried gas pipeline subjected to buoyancy in liquefaction areas. Soil constraints on pipe were considered accurately in the proposed models through soil spring assumptions. Effects of axial forces on pipe’s bending deformation were also considered via the governing equations for beam under bending and tension. Deformation compatibility condition was utilized to derive the axial forces in pipe. The accuracy of the proposed analytical model was validated by comparing its results with those derived by an established rigorous finite element model. In addition, parametric analysis was finally performed using the analytical model to study the influences of pipe diameter, pipe wall thickness, soil spring stiffness and width of liquefaction zone on pipe’s mechanical responses. This study can be referenced in the strength analysis and performance based safety evaluation of buried gas pipelines crossing liquefaction areas

    Method and application of information sharing throughout the emergency rescue process based on 5G and AR wearable devices

    No full text
    Abstract The 2022 Winter Olympics were held in the three competition zones of Beijing, Yanqing and Zhangjiakou, China. The venues of this Winter Olympics were scattered and the terrain was complex. Moreover, the medical resources of Hebei and Beijing were relatively unbalanced. In the medical security of major events, the connection between first aid and in-hospital processes is of the utmost importance to rescue quality. 5th generation mobile network (5G) applications in medical scenarios are on the rise. It would be of great relevance to fully use 5G’s low-latency and high-speed features to share the process information of patients, ambulance personnel, and the destination hospital’s rescue team at emergency scenes and in transportation, improving rescue efficiency. This paper proposes a system scheme of cross-institutional emergency health information sharing based on 5G and augmented reality wearable devices. It also integrates the construction method of monitoring and other sign data sharing, in addition to testing the proposed scheme’s service quality in 5G environments. In the deployment area of the 5G emergency medical rescue information sharing scheme for the Beijing Winter Olympic Games, we selected two designated medical support institutions for testing. The test adopted a combination of fixed-point and driving tests to experiment on the service data, voice service, and streaming media indicators. The 5G signal's coverage rate was close to 100%, the standalone connection's success rate was 100%, and the drop rate was 0. The average downlink rate of multiple scenarios was 620mbps, and the average uplink rate of 5G was over 71.8mbps, which is higher than the average 5G level in China. The downlink rate was more than 20 times larger than the 4th generation mobile network (4G) rate. This study’s proposed scheme demonstrates the importance of 5G applications in emergency response and support, in addition to providing a suitable scheme for the integration of 5G networks in the medical scene

    Construction and effectiveness evaluation of a knowledge-based infectious disease monitoring and decision support system

    No full text
    Abstract To improve the hospital's ability to proactively detect infectious diseases, a knowledge-based infectious disease monitoring and decision support system was established based on real medical records and knowledge rules. The effectiveness of the system was evaluated using interrupted time series analysis. In the system, a monitoring and alert rule library for infectious diseases was generated by combining infectious disease diagnosis guidelines with literature and a real medical record knowledge map. The system was integrated with the electronic medical record system, and doctors were provided with various types of real-time warning prompts when writing medical records. The effectiveness of the system's alerts was analyzed from the perspectives of false positive rates, rule accuracy, alert effectiveness, and missed case rates using interrupted time series analysis. Over a period of 12 months, the system analyzed 4,497,091 medical records, triggering a total of 12,027 monitoring alerts. Of these, 98.43% were clinically effective, while 1.56% were invalid alerts, mainly owing to the relatively rough rules generated by the guidelines leading to several false alarms. In addition, the effectiveness of the system's alerts, distribution of diagnosis times, and reporting efficiency of doctors were analyzed. 89.26% of infectious disease cases could be confirmed and reported by doctors within 5 min of receiving the alert, and 77.6% of doctors could complete the filling of 33 items of information within 2 min, which is a reduction in time compared to the past. The timely reminders from the system reduced the rate of missed cases by doctors; the analysis using interrupted time series method showed an average reduction of 4.4037% in the missed-case rate. This study proposed a knowledge-based infectious disease decision support system based on real medical records and knowledge rules, and its effectiveness was verified. The system improved the management of infectious diseases, increased the reliability of decision-making, and reduced the rate of underreporting
    corecore