8,147 research outputs found

    Waun Ki Hong, MD, Oral History Interview, September 16, 2013

    Get PDF
    Major Topics Covered: Personal and educational background; military experience Research: organ preservation (especially of the larynx), studies of leukoplakias, Vitamin A, chemoprevention, and personalized, targeted therapy; multi-disciplinary approaches to diseases of the aero-digestive system Approaches to research design, team science, translational research The Department of Thoracic and Head and Neck Medical Oncology: organization, fellowship program, creating an environment for excellence The Division of Cancer Medicine MD Anderson growth; the presidents Leadership; leading teams, fostering collaborationhttps://openworks.mdanderson.org/mchv_interviewsessions/1147/thumbnail.jp

    Waun Ki Hong, MD, Oral History Interview, October 16, 2013

    Get PDF
    Major Topics Covered: Personal and educational background; military experience Research: organ preservation (especially of the larynx), studies of leukoplakias, Vitamin A, chemoprevention, and personalized, targeted therapy; multi-disciplinary approaches to diseases of the aero-digestive system Approaches to research design, team science, translational research The Department of Thoracic and Head and Neck Medical Oncology: organization, fellowship program, creating an environment for excellence The Division of Cancer Medicine MD Anderson growth; the presidents Leadership; leading teams, fostering collaborationhttps://openworks.mdanderson.org/mchv_interviewsessions/1148/thumbnail.jp

    On the Potential of Optical Nanoantennas for Visibly Transparent Solar Cells

    Get PDF
    This study aims to determine the maximum possible energy conversion efficiency of visibly transparent solar cells using the detailed balance limit (also known as the Shockley–Queisser limit) and compare it to the efficiency of traditional single-junction solar cells. To achieve this, a new optical nanoantenna has been designed to absorb incoming light selectively, enhancing the average visible transmission while maintaining high absorption in the infrared and UV regions. The color appearance of the antennas has also been evaluated through colorimetrical characterization. Our findings indicate that it is possible to achieve high average visible transparency and energy conversion efficiency of over 80 and 18%, respectively, by carefully selecting semiconductor materials. Such solar cells are versatile enough to be integrated seamlessly into smart windows, agrivoltaic concepts in open and protected cultivation, mobile devices, and appliances without compromising their appearance or functionality. The dimensions and optics of the proposed antennas and visibly transparent solar cells have been thoroughly discussed

    Current and Potential Developments of Cortisol Aptasensing towards Point-of-Care Diagnostics (POTC)

    Get PDF
    Anxiety is a psychological problem that often emerges during the normal course of human life. The detection of anxiety often involves a physical exam and a self-reporting questionnaire. However, these approaches have limitations, as the data might lack reliability and consistency upon application to the same population over time. Furthermore, there might be varying understanding and interpretations of the particular question by the participant, which necessitating the approach of using biomarker-based measurement for stress diagnosis. The most prominent biomarker related to stress, hormone cortisol, plays a key role in the fight-or-flight situation, alters the immune response, and suppresses the digestive and the reproductive systems. We have taken the endeavour to review the available aptamer-based biosensor (aptasensor) for cortisol detection. The potential point-of-care diagnostic strategies that could be harnessed for the aptasensing of cortisol were also envisaged

    A comparative study of magnetic behaviors in TbNi2, TbMn2 and TbNi2Mn

    Get PDF
    All TbNi2, TbMn2, and TbNi2Mn compounds exhibit the cubic Laves phase with AB2-type structure in spite of the fact that the ratio of the Tb to transition-metal components in TbNi2Mn is 1:3. Rietveld refinement indicates that in TbNi2Mn the Mn atoms are distributed on both the A (8a) and B (16d) sites. The values of the lattice constants were measured to be a = 14.348 Å (space group F-43 m), 7.618 Å, and 7.158 Å (space group Fd-3 m) for TbNi2, TbMn2, and TbNi2Mn, respectively. The magnetic transition temperatures TC were found to be TC = 38 K and TC = 148 K for TbNi2 and TbNi2Mn, respectively, while two magnetic phase transitions are detected for TbMn2 at T1 = 20 K and T2 = 49 K. Clear magnetic history effects in a low magnetic field are observed in TbMn2 and TbNi2Mn. The magnetic entropy changes have been obtained

    Experimental delayed-choice entanglement swapping

    Full text link
    Motivated by the question, which kind of physical interactions and processes are needed for the production of quantum entanglement, Peres has put forward the radical idea of delayed-choice entanglement swapping. There, entanglement can be "produced a posteriori, after the entangled particles have been measured and may no longer exist". In this work we report the first realization of Peres' gedanken experiment. Using four photons, we can actively delay the choice of measurement-implemented via a high-speed tunable bipartite state analyzer and a quantum random number generator-on two of the photons into the time-like future of the registration of the other two photons. This effectively projects the two already registered photons onto one definite of two mutually exclusive quantum states in which either the photons are entangled (quantum correlations) or separable (classical correlations). This can also be viewed as "quantum steering into the past"

    Conditional control of the quantum states of remote atomic memories for quantum networking

    Get PDF
    Quantum networks hold the promise for revolutionary advances in information processing with quantum resources distributed over remote locations via quantum-repeater architectures. Quantum networks are composed of nodes for storing and processing quantum states, and of channels for transmitting states between them. The scalability of such networks relies critically on the ability to perform conditional operations on states stored in separated quantum memories. Here we report the first implementation of such conditional control of two atomic memories, located in distinct apparatuses, which results in a 28-fold increase of the probability of simultaneously obtaining a pair of single photons, relative to the case without conditional control. As a first application, we demonstrate a high degree of indistinguishability for remotely generated single photons by the observation of destructive interference of their wavepackets. Our results demonstrate experimentally a basic principle for enabling scalable quantum networks, with applications as well to linear optics quantum computation.Comment: 10 pages, 8 figures; Minor corrections. References updated. Published at Nature Physics 2, Advanced Online Publication of 10/29 (2006

    Owning an overweight or underweight body: distinguishing the physical, experienced and virtual body

    Get PDF
    Our bodies are the most intimately familiar objects we encounter in our perceptual environment. Virtual reality provides a unique method to allow us to experience having a very different body from our own, thereby providing a valuable method to explore the plasticity of body representation. In this paper, we show that women can experience ownership over a whole virtual body that is considerably smaller or larger than their physical body. In order to gain a better understanding of the mechanisms underlying body ownership, we use an embodiment questionnaire, and introduce two new behavioral response measures: an affordance estimation task (indirect measure of body size) and a body size estimation task (direct measure of body size). Interestingly, after viewing the virtual body from first person perspective, both the affordance and the body size estimation tasks indicate a change in the perception of the size of the participant’s experienced body. The change is biased by the size of the virtual body (overweight or underweight). Another novel aspect of our study is that we distinguish between the physical, experienced and virtual bodies, by asking participants to provide affordance and body size estimations for each of the three bodies separately. This methodological point is important for virtual reality experiments investigating body ownership of a virtual body, because it offers a better understanding of which cues (e.g. visual, proprioceptive, memory, or a combination thereof) influence body perception, and whether the impact of these cues can vary between different setups

    Modulation of Sn concentration in ZnO nanorod array: intensification on the conductivity and humidity sensing properties

    Get PDF
    Tin (Sn)-doped zinc oxide (ZnO) nanorod arrays (TZO) were synthesized onto aluminum-doped ZnO-coated glass substrate via a facile sonicated sol–gel immersion method for humidity sensor applications. These nanorod arrays were grown at different Sn concentrations ranging from 0.6 to 3 at.%. X-ray diffraction patterns showed that the deposited TZO arrays exhibited a wurtzite structure. The stress/strain condition of the ZnO film metamorphosed from tensile strain/compressive stress to compressive strain/tensile stress when the Sn concentrations increased. Results indicated that 1 at.% Sn doping of TZO, which has the lowest tensile stress of 0.14 GPa, generated the highest conductivity of 1.31 S cm− 1. In addition, 1 at.% Sn doping of TZO possessed superior sensitivity to a humidity of 3.36. These results revealed that the optimum performance of a humidity-sensing device can be obtained mainly by controlling the amount of extrinsic element in a ZnO film
    corecore