431 research outputs found

    Macroscopic magnetization jumps due to independent magnons in frustrated quantum spin lattices

    Full text link
    For a class of frustrated spin lattices including the kagome lattice we construct exact eigenstates consisting of several independent, localized one-magnon states and argue that they are ground states for high magnetic fields. If the maximal number of local magnons scales with the number of spins in the system, which is the case for the kagome lattice, the effect persists in the thermodynamic limit and gives rise to a macroscopic jump in the zero-temperature magnetization curve just below the saturation field. The effect decreases with increasing spin quantum number and vanishes in the classical limit. Thus it is a true macroscopic quantum effect.Comment: 4 pages, 4 figures, accepted by Phys.Rev.Let

    Finite-temperature ordering in a two-dimensional highly frustrated spin model

    Full text link
    We investigate the classical counterpart of an effective Hamiltonian for a strongly trimerized kagome lattice. Although the Hamiltonian only has a discrete symmetry, the classical groundstate manifold has a continuous global rotational symmetry. Two cases should be distinguished for the sign of the exchange constant. In one case, the groundstate has a 120^\circ spin structure. To determine the transition temperature, we perform Monte-Carlo simulations and measure specific heat, the order parameter as well as the associated Binder cumulant. In the other case, the classical groundstates are macroscopically degenerate. A thermal order-by-disorder mechanism is predicted to select another 120^\circ spin-structure. A finite but very small transition temperature is detected by Monte-Carlo simulations using the exchange method.Comment: 11 pages including 9 figures, uses IOP style files; to appear in J. Phys.: Condensed Matter (proceedings of HFM2006

    Exact eigenstates of highly frustrated spin lattices probed in high fields

    Full text link
    Strongly frustrated antiferromagnets such as the magnetic molecule {Mo72Fe30}, the kagome, or the pyrochlore lattice exhibit a variety of fascinating properties like low-lying singlets, magnetization plateaus as well as magnetization jumps. During recent years exact many-body eigenstates could be constructed for several of these spin systems. These states become ground states in high magnetic fields, and they also lead to exotic behavior. A key concept to an understanding of these properties is provided by independent localized magnons. The energy eigenvalue of these n-magnon states scales linearly with the number n of independent magnons and thus with the total magnetic quantum number M=Ns-n. In an applied field this results in a giant magnetization jump which constitutes a new macroscopic quantum effect. It will be demonstrated that this behavior is accompanied by a massive degeneracy, an extensive (T=0)-entropy, and thus a large magnetocaloric effect at the saturation field. The connection to flat band ferromagnetism will be outlined.Comment: 4 pages, submitted to the proceedings of the Yamada Conference LX on Research in High Magnetic Fields, August 16-19, 2006 Sendai, Japa

    A Comparative Study of the Magnetization Process of Two-Dimensional Antiferromagnets

    Full text link
    Plateaux in the magnetization curves of the square, triangular and hexagonal lattice spin-1/2 XXZ antiferromagnet are investigated. One finds a zero magnetization plateau (corresponding to a spin-gap) on the square and hexagonal lattice with Ising-like anisotropies, and a plateau with one third of the saturation magnetization on the triangular lattice which survives a small amount of easy-plane anisotropy. Here we start with transfer matrix computations for the Ising limit and continue with series in the XXZ-anisotropy for plateau-boundaries using the groundstates of the Ising limit. The main focus is then a numerical computation of the magnetization curves with anisotropies in the vicinity of the isotropic situation. Finally, we discuss the universality class associated to the asymptotic behaviour of the magnetization curve close to saturation, as observed numerically in two and higher dimensions.Comment: 21 pages plain TeX (with macro package included), 7 PostScript figures included using psfig.st

    The square-kagome quantum Heisenberg antiferromagnet at high magnetic fields: The localized-magnon paradigm and beyond

    Get PDF
    We consider the spin-1/2 antiferromagnetic Heisenberg model on the two-dimensional square-kagome lattice with almost dispersionless lowest magnon band. For a general exchange coupling geometry we elaborate low-energy effective Hamiltonians which emerge at high magnetic fields. The effective model to describe the low-energy degrees of freedom of the initial frustrated quantum spin model is the (unfrustrated) square-lattice spin-1/2 XXZXXZ model in a zz-aligned magnetic field. For the effective model we perform quantum Monte Carlo simulations to discuss the low-temperature properties of the square-kagome quantum Heisenberg antiferromagnet at high magnetic fields. We pay special attention to a magnetic-field driven Berezinskii-Kosterlitz-Thouless phase transition which occurs at low temperatures.Comment: 6 figure

    Atomic Fermi gas in the trimerized Kagom\'e lattice at the filling 2/3

    Full text link
    We study low temperature properties of an atomic spinless interacting Fermi gas in the trimerized Kagom\'e lattice for the case of two fermions per trimer. The system is described by a quantum spin 1/2 model on the triangular lattice with couplings depending on bonds directions. Using exact diagonalizations we show that the system exhibits non-standard properties of a {\it quantum spin-liquid crystal}, combining a planar antiferromagnetic order with an exceptionally large number of low energy excitations.Comment: 4 pages & 4 figures + 2 tables, better version of Fig.

    Frustrated ferromagnetic spin-1/2 chain in a magnetic field: The phase diagram and thermodynamic properties

    Full text link
    The frustrated ferromagnetic spin-1/2 Heisenberg chain is studied by means of a low-energy field theory as well as the density-matrix renormalization group and exact diagonalization methods. Firstly, we study the ground-state phase diagram in a magnetic field and find an `even-odd' (EO) phase characterized by bound pairs of magnons in the region of two weakly coupled antiferromagnetic chains. A jump in the magnetization curves signals a first-order transition at the boundary of the EO phase, but otherwise the curves are smooth. Secondly, we discuss thermodynamic properties at zero field, where we confirm a double-peak structure in the specific heat for moderate frustrating next-nearest neighbor interactions.Comment: 4 pages RevTex4, 4 figures. Minor changes, title modified. Additional material is available here: http://www.theorie.physik.uni-goettingen.de/~honecker/j1j2-td

    Giant spin canting in the S = 1/2 antiferromagnetic chain [CuPM(NO3)2(H2O)2]n observed by 13C-NMR

    Full text link
    We present a combined experimental and theoretical study on copper pyrimidine dinitrate [CuPM(NO3)2(H2O)2]n, a one-dimensional S = 1/2 antiferromagnet with alternating local symmetry. From the local susceptibility measured by NMR at the three inequivalent carbon sites in the pyrimidine molecule we deduce a giant spin canting, i.e., an additional staggered magnetization perpendicular to the applied external field at low temperatures. The magnitude of the transverse magnetization, the spin canting of 52 degrees at 10 K and 9.3 T and its temperature dependence are in excellent agreement with exact diagonalization calculations.Comment: 5 pages, 6 Postscript figure
    corecore