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BACKGROUND: In the development of the human ovary, the second trimester includes the transition from oogo-
nial replication to primordial follicle formation. The present study was carried out to assess differentiation and
proliferation of germ cells in a series of female gonads from 19 fetuses from the second and third trimester, and
two neonates. METHODS: Using immunohistochemistry, the following markers were studied: placental/germ-like
cell alkaline phosphatases (PLAP), the marker of pluripotency OCT3/4, the proliferation marker Ki-67, b-catenin
and E-cadherin, the stem cell factor receptor c-KIT, and VASA, a protein specific for the germ cell lineage.
RESULTS: PLAP and OCT3/4 were seen during oogenesis, but not in germ cells engaged in folliculogenesis. A
similar pattern was observed for Ki-67. Loss of pluripotency occurs once oocytes engage in follicle formation,
suggesting a role of cell–cell interactions in the process of germ cell maturation. VASA, c-KIT, b-catenin and E-
cadherin were found in germ cells at all developmental stages of oogenesis and folliculogenesis. CONCLUSIONS:
Immunohistochemically, two groups of germ cells can be distinguished. Germ cells that are predominantly found
in the cortical region of the ovary before weeks 22–24 of gestation, showing an immature phenotype, are mitoti-
cally active, and express OCT3/4, a marker of pluripotency. On the other hand, germ cells undergoing folliculogen-
esis have lost their pluripotent potential and no longer proliferate.
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Introduction

In humans and rodents, amongst other species, the embryo-

nic precursors of the gametes are known as primordial

germ cells (PGC) (see Donovan, 1998, for review). These

cells are set aside to an extra-embryonic location early

during embryonic development, and migrate to the area

where the genital ridge will be formed around weeks 5 and

6 of human development (Witschi, 1948). Subsequently,

the gonads and sexual differentiation occur in weeks 6 and

7 (Falin, 1969). Between weeks 7 and 9 during ovarian

development (referred to as prefollicular stage) the germ

cells (oogonia) and granulosa cells characteristically arrange

in cords and sheets without specific organization (Gondos,

1985). The population of oogonia increases by undergoing

multiple divisions, after which they become oocytes, stop

proliferating, and enter the first steps of meiosis. The first

distinctive change in prenatal germ cell development in the

ovary is therefore the onset of meiosis, which starts at

11–12 weeks of gestation and extends into the second tri-

mester (Rabinovici and Jaffe, 1990). Contradictory data

exist with regard to the onset of folliculogenesis, i.e. the

occurrence of primordial follicles, which has been reported

to take place between 16 and 21 weeks of gestation (Kur-

ilo, 1981; Konishi et al., 1986). Due to the proliferation of

premeiotic oogonia on the one hand and the apoptotic

elimination of both oogonia and germ cells at different

stages of folliculogenesis during intrauterine maturation on

the other hand, considerable changes in the total number of

germ cells are seen (De Pol et al., 1997). Whereas at 5

weeks of gestational age an estimated 700–1300 germ

cells are present, germ cell number peaks between weeks

16 and 20, reaching an estimated 6 £ 106 cells per ovary

(Baker, 1963). At birth, the total number of germ cells has

been estimated to be ,1 £ 106 cells, and the number of

follicles has been reported to be in the range of 1.3–

3.8 £ 105, with 95% being represented by primordial

follicles (Baker, 1963; Forabosco et al., 1991). Maturation

is a gradual process, as is demonstrated by the initiation of

Human Reproduction Vol.20, No.6 pp. 1466–1476, 2005 doi:10.1093/humrep/deh800

Advance Access publication February 25, 2005

1466 q The Author 2005. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.

For Permissions, please email: journals.permissions@oupjournals.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55837986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


certain stages at certain times, i.e. the temporal regulation

of oocyte development. In humans, this process is not syn-

chronized, as germ cells of different developmental stages

can be detected at the same time in the same prenatal

ovary. This indicates that unknown intracellular mechan-

isms govern the individual pace of maturation (Rabinovici

and Jaffe, 1990).

In order to further investigate the distribution and timing

of proliferation and differentiation, we undertook an exten-

sive study on the presence of a number of markers involved

in either proliferation or maturation of normal female germ

cells spanning the intrauterine period between week 15.5

gestational age and the neonatal period. In the human ovary,

this crucial period includes the transition from oogonial repli-

cation by mitosis to primordial follicle formation. In this

study we investigated the maturation process seen in normal

development of the ovary and assess its potential as a refer-

ence for future identification of pathological processes of

maturation.

Materials and methods

Tissue samples

Use of tissues for scientific reasons has been approved by an insti-

tutional review board (MEC 02.981). The samples are used accord-

ing to the ‘Code for Proper Secondary Use of Human Tissue in the

Netherlands’, as developed by the Dutch Federation of Medical

Scientific Societies (FMWV) (version 2002). Human gonads of 19

females from the second and third trimester after spontaneous or

induced abortions (gestational ages 15.5–40 weeks), or premature

and term neonates that had died shortly after birth were obtained

from post-mortem examinations in our department. Ovaries were

dissected and fixed in 10% formalin and processed into paraffin. To

assure satisfactory quality, poor preservation of tissue samples

assessed by haematoxylin–eosin staining led to exclusion from this

analysis. Cases showing conditions that can possibly affect gonadal

development such as trisomy 18 and 21, hydrocephalus, maldeve-

loped kidneys, or gross intrauterine growth retardation, were

excluded from the study. Gestational ages were calculated in

relation to the mothers’ last menstrual cycle and were in accordance

with the foot length and the crown–heel length measurements at

autopsy.

Histochemical and immunohistochemical stainings

Stainings were performed as described before (Stoop et al., 2001).

For immunohistochemistry, sections were incubated with the pri-

mary antibody overnight at 4 8C [placental/germ-like cell alkaline

phosphatases (PLAP), c-KIT, VASA, b-catenin, E-cadherin] or 2 h

at room temperature (OCT3/4, Ki-67). The primary and secondary

antibodies used are indicated in Table I. All slides were counter-

stained with haematoxylin. For PLAP, b-catenin and E-cadherin,

positive staining of the Fallopian tube, and for c-KIT, the presence

of mast cells were used as an internal positive control. Negative

controls were performed by omitting the primary antibody, resulting

in complete absence of signal.

Double-stainings were performed by using a combination of the

same detection methods but with different substrates: Fast Blue/-

Naphtol ASMX phosphate (F3378 and N500; Sigma, Germany) for

blue staining and 3-amino-9-ethyl-carbazole (A.5754 and D4254;

Sigma)/H2O2 for red staining, without counterstaining. EndogenousT
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peroxidase activity and/or endogenous biotin was blocked using 3%

H2O2 (for 5 min) and/or a blocking kit for endogenous biotin (Vec-

tor Laboratories, USA) to prevent background staining.

To semiquantitatively assess expression of the markers investi-

gated, cells showing a positive signal were counted in representative

visual fields (magnification £ 200) containing surface areas of both

the medullary and the cortical region of the ovary in comparable

proportions in all cases. In addition, cells positive for PLAP,

OCT3/4 and Ki-67 were counted in three representative high power

fields (magnification £ 400) of both the medullary and cortical

regions of seven cases (gestational ages 15.5, 20, 23, 28, 33, 35 and

36 weeks) to assess regional differences. For quantitative analysis of

OCT3/4, the percentage of positive cells among the total number of

germ cells (as identified by histology) was assessed in three cases

(gestational ages 15.5, 28 and 36 weeks) counting three representa-

tive visual fields (magnification £ 200). The counting was per-

formed independently by three different observers (H.S., F.H. and

M.C.) who were unaware of the gestational age at the time-point of

the investigation.

Results

The presence of a number of markers during normal fetal

and neonatal ovarian development (week 15.5 gestational age

until 6 weeks postnatally) was studied in 19 ovaries. Figure 1

summarizes the results of a semiquantitative assessment of

the different markers. Each black dot represents one case.

Figure 1. Absolute numbers of cells per representative visual field (magnification factor £ 200) showing a positive staining with immunohis-
tochemistry for the markers at different gestational ages (weeks). The earliest case studied in this series was 15.5 weeks, the oldest was the
ovary of a neonate of 6 weeks. The arrow indicates partus (median 40 ^ 2 weeks). The left panel (A, C, E) shows markers that remain posi-
tive throughout pre- and perinatal oogenesis and formation of primordial follicles. The right panel (B, D, F) illustrates factors associated with
germ cell differentiation and proliferation. Each black dot represents one case. Note smaller scale of the y-axis (lower overall numbers) in B
(placental/germ cell alkaline phosphatases, PLAP). As b-catenin and E-cadherin were expressed in the same cells in adjacent slides with simi-
lar localization, cell numbers for b-catenin (C) are also representative for E-cadherin.
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Table II shows the results of a differential analysis, compar-

ing expression of PLAP, OCT3/4 and Ki-67 in the medullary

and cortical regions of the ovaries of seven cases, aged 15.5,

20, 23, 28, 33, 35 and 36 weeks. Table III gives both the

absolute numbers and the percentage of cells positive for

OCT3/4 in three of these cases, aged 15.5, 28 and 36 weeks.

Illustrations of representative stainings are shown in Figures

2 and 3. Results of single- and double-stainings are described

below. The data in Figure 4 (grey bars) were compared to

previously published findings (black bars). Figure 5 shows a

model of the progression of markers from oogonia to primor-

dial follicles.

Immunohistochemical detection of Ki-67, PLAP and
OCT3/4

Ki-67, PLAP and OCT3/4 were all found much more fre-

quently at earlier fetal ages, and expression decreased with

advancing gestational age (Figure 1). The various regions of

the ovary showed different stages of germ cell maturation:

cells positive for Ki-67, PLAP and OCT3/4 were mainly

observed in the cortical region of the developing ovaries, i.e.

the region where most immature germ cells are located

during the process of oogenesis (Tables II and III). In the

medulla, where the majority of maturing germ cells are

found during ovarian development, positive cells were much

less frequent.

The proliferation index was assessed using Ki-67, which

showed a nuclear staining in both early germ cells and inter-

stitial cells throughout the whole period of ovarian develop-

ment investigated in this series. A marked decrease in the

number of positive cells was observed after weeks 22–24 of

gestational age, mainly due to the cessation of mitosis of

germ cells. This indicates that proliferating germ cells con-

tribute significantly to the overall number of Ki-67 positive

cells in fetal ovaries. In germ cells, Ki-67 was observed

mainly in oogonia (see Figure 2A). Yet, whereas the majority

of oocytes engaged in folliculogenesis did not show Ki-67

expression, it was occasionally observed in oocytes of pri-

mordial follicles, where it was strictly confined to the nucleo-

lus. Perinatally, only a few cells, mainly interstitial cells or

granulosa cells, were positive.

The highest number of germ cells positive for PLAP was

seen in the earliest stages of fetal development examined,

and decreased sharply after 25 weeks gestational age (Figure

1). PLAP was detected in early germ cells predominantly

located in the cortical region (Figure 2B and Table II). After

birth, PLAP positive germ cells were hardly ever seen, with

a maximum of one to three positive cells per visual field.

PLAP expression was not restricted to germ cells, but was

also seen in the Fallopian tube and occasionally in the epi-

thelial lining of the ovary.

Nuclear staining for OCT3/4 was restricted to germ cells

and the overall staining pattern was comparable to PLAP, yet

total numbers of germ cells positive for OCT3/4 were some-

what higher (Figure 1 and Table II). In addition to oogonia,

OCT3/4 was occasionally seen in early oocytes, but was

never detectable in cells involved in folliculogenesis (Figure

2C). Similar to the expression pattern of Ki-67 and PLAP, a

decline in the expression of OCT3/4 in fetal ovaries was seen

at ,24 weeks of gestation. At term and in ovaries of neo-

Table II. Differences in the expression of placental/germ-like cell alkaline phosphatases (PLAP), OCT3/4 and Ki-67 between the cortical and the medullary
region of fetal ovaries aged 15.5–36 weeks

Gestational age (weeks)

15.5 20 23 28 33 35 36

PLAP
Cortex 94 (72–115) 35 (23–44) 73 (54–85) 9 (3–12) 11 (9–13) 0 14 (12–17)
Medulla 34 (12–52) 4 (2–6) 4 (1–6) 5 (1–9) 0 2 (1–3) 3 (2–4)
OCT3/4
Cortex 131 (106–157) 57 (56–57) 122 (99–162) 32 (29–33) 2 (0–3) 0 9 (1–20)
Medulla 49 (36–58) 12 (1–21) 26 (14–43) 8 (2–14) 0 2 (0–5) 4 (1–6)
Ki-67
Cortex 234 (221–252) 136 (112–148 110 (95–118) 77 (62–98) 4 (2–7) 15 (9–18) 60 (46–75)
Medulla 163 (152–172) 86 (70–110) 61 (55–65) 53 (36–75) 0 26 (16–32) 45 (24–69)

The average and the range of cell numbers found positive for the indicated markers in three independent high power magnification fields ( £ 400) is given.
Note that expression of the early markers PLAP and OCT3/4 and the proliferation marker Ki-67 is predominantly found in the cortical region. Overall, the num-
ber of positive cells decreases between 15.5 and 28 weeks, but shows some inter-individual variation during the third trimester.

Table III. Absolute numbers compared to total present (and percentage) of cells positive for OCT3/4 in three ovaries of 15.5, 28 and 36 weeks gestational age

OCT3/4 Gestational age (weeks)

15.5 28 36

Cortex 231/681 (34%; range 32–38) 5/324 (1.5%; range 0–4) 13/242 (5.4%; range 0–7)
Medulla 35/271 (13%; range 6–18) 2/201 (1%; range 0–2) 0/188 (0)

The total number of germ cells, identified by histology, and the number of germ cells expressing OCT3/4 immunohistochemically was assessed in three inde-
pendent low power fields (magnification £ 200) in both the cortical and the medullary region of three fetal ovaries. In parentheses, the percentage of germ cells
expressing OCT3/4 is given, together with the range (as percentage) of three different counts of three different fields per case. Whereas a significant number of
germ cells express OCT3/4 at 15.5 weeks, predominantly in the cortex, the percentage of positive cells decreases markedly during the third trimester. Note the
decrease in overall numbers of germ cells.
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Figure 2. Results of immunohistochemical analysis of different markers in fetal germ cells. The cortex (C) and medulla (M) are indicated.
(A) Fetal ovary (15.5 weeks of development) (magnification £200); Ki-67 (brown nuclear signal) seen both in germ cells and cells of non-
germ cell origin (e.g. stromal cells, endothelial cells, granulosa cells). Positive cells are mainly seen in a cortical localization (indicated by an
arrow). (B) Fetal ovary (same case) (magnification £200); placental/germ cell alkaline phosphatase (PLAP); red cytoplasmic signal. Note
high number of positive cells (oogonia) at a cortical localization. (C) Fetal ovary (22 weeks of development) (magnification £400); OCT3/4
(brown nuclear signal). Oogonia and immature oocytes, mainly cortically localized, are positive, whereas primordial follicles are negative.
(D) Fetal ovary (same case) (magnification £400); double-staining for OCT3/4 (red nuclear signal) and PLAP (blue cytoplasmic signal).
OCT3/4 and PLAP are co-expressed in the majority of immature germ cells, and occasionally cells are positive for OCT3/4 but negative for

H.Stoop et al.
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nates, hardly any positive germ cells were detectable.

Immunohistochemical detection of c-KIT, b-catenin/
E-cadherin and VASA

A comparable staining pattern was seen for c-KIT, b-catenin

and E-cadherin (Figure 3A–F). Both in early, immature

germ cells (oogonia) and at all later stages of folliculogen-

esis, these factors were predominantly localized at the mem-

brane, but sometimes also showed a cytoplasmic localization

(see also Figure 1). In primordial follicles, all three factors

showed strong signal intensity at sites of cell–cell interaction

(Figure 3A–F). As b-catenin and E-cadherin were expressed

in the same cells in adjacent slides in similar localization,

these factors could be linked, forming an E-cadherin–catenin

complex in germ cells. In addition to their presence in germ

cells, these factors were also seen in epithelial cells of the

Fallopian tube, serving as an internal positive control.

VASA was observed in the cytoplasm of germ cells, both

oogonia and oocytes, at all gestational ages and after birth

(Figure 1G and H). In addition to oogonia and early oocytes,

all stages of follicle maturation showed presence of VASA.

Signal intensity varied with maturation of germ cells: early

germ cells showed only weak staining for VASA, and signal

intensity increased with maturation and was strongest in pri-

mordial follicles (Figure 3G). The total number of germ

cells, determined by VASA, decreased with gestational age:

whereas at 15.5 weeks ,600 germ cells, mostly oogonia and

early oocytes, were seen per visual field, the average number

of germ cells at term was ,100–200 per visual field.

Results of double-stainings

Double-stainings were performed to assess correlations or

differences of markers at different stages of maturation. A

total of nine cases of 15.5, 18, 24 (three different cases), 28,

33, 36 weeks gestational age, and a neonate of 2 weeks, born

at term, were stained for six different combinations: OCT3/4

and PLAP, PLAP and c-KIT, OCT3/4 and c-KIT, OCT3/4

and VASA, OCT3/4 and b-catenin, and PLAP and Ki-67

(Figure 2D–H respectively). The results of all double-stain-

ing experiments were in accordance with the results of the

respective single-staining experiments. Staining for OCT3/4

and PLAP revealed that a higher number of germ cells were

positive for OCT3/4 than for PLAP, with a constant ratio of

1.4:1 observed for all ages investigated (Figure 2D). PLAP

was never detected in germ cells negative for OCT3/4, and

expression of OCT3/4 was still observed at later stages of

development, when PLAP was already undetectable. Double-

staining for PLAP and c-KIT showed that at all gestational

ages more germ cells were positive for c-KIT than for PLAP.

PLAP was never detected in oogonia without expression of

c-KIT, but in contrast to PLAP, c-KIT remained positive

throughout maturation, including different stages of folliculo-

genesis (Figure 2E). In accordance with these findings,

OCT3/4 and c-KIT were found in comparable numbers only

in early germ cells, whereas during folliculogenesis, c-KIT

remained positive in germ cells that had already lost OCT3/4

expression (Figure 2F). Similar staining patterns were

observed for the combinations OCT3/4 and VASA, and

OCT3/4 and b-catenin (not shown), where co-expression was

restricted to early germ cells, whereas expression of OCT3/4

was no longer seen at later stages of maturation. Interest-

ingly, an inverse correlation was found between the presence

of OCT3/4 and the staining intensity of VASA. Oogonia

were positive for OCT3/4, but only weakly positive for

VASA, whereas primordial follicles staining strongly for

VASA no longer showed OCT3/4 (Figure 2G). Double-stain-

ing for PLAP and Ki-67 revealed that significantly more cells

were positive for Ki-67 than for PLAP at all ages. Further-

more, not all early germ cells (identified by PLAP

expression) were proliferating at the same time (Figure 2H).

A proportion of germ cells of between 50% at earlier and

37% at later gestational ages showed co-expression of both

markers. This indicates that in addition to a decrease in the

absolute number of early germ cells, these cells are also less

likely to proliferate at later stages of ovarian development.

During the third trimester, expansion of the pool of early

germ cells (indicated by co-expression of Ki-67 and PLAP)

has basically ceased.

Discussion

The aim of this study was to examine the differential

expression of a number of factors involved in proliferation

and differentiation of human fetal germ cells. The findings

give an indication of the temporal scale as well as the

regional differences during the maturation of normal female

germ cells in the human ovary. The overall picture of the

presence of the different factors in fetal and neonatal ovaries

is shown graphically in Figure 4 (grey bars) and compared to

findings in humans published so far in the literature (black

bars). Figure 5 gives a scheme of marker progression during

maturation from oogonia to primordial follicles.

PLAP (indicated by an arrowhead). (E) Fetal ovary (same case) (magnification £ 400); double-staining for PLAP (blue cytoplasmic signal)
and c-KIT (red membranous signal). Primordial follicles express only c-KIT, and only a minority of cortically located immature germ cells is
positive for both markers. (F) Fetal ovary (same case) (magnification £ 400); double-staining for OCT3/4 (blue nuclear signal) and c-KIT
(red membranous signal). Similar staining pattern as seen in E, but note that more germ cells are positive for OCT3/4 than for PLAP. (G)
Fetal ovary (same case) (magnification £ 400); double-staining for OCT3/4 (red nuclear signal) and VASA (blue cytoplasmic signal). Primor-
dial follicles, mostly located in the medullary region, show a strong intensity of VASA and are negative for OCT3/4, whereas immature germ
cells, mostly found in a cortical localization, are positive for OCT3/4 but show only weak VASA staining. (H) Fetal ovary (15.5 weeks of
development) (magnification £ 200); double-staining for Ki-67 (red nuclear signal) and PLAP (blue cytoplasmic signal). Significantly more
cells are positive for Ki-67 than for PLAP. The majority of proliferating cells are of non-germ cell origin, as demonstrated by positive stain-
ing for Ki-67 but absence of PLAP; however, a few oogonia (identified by PLAP expression) show co-expression of Ki-67, indicating that
these immature germ cells are mitotically active (indicated by an arrow).
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Figure 3. Results of immunohistochemical analysis of different markers in fetal germ cells. The cortex (C) and medulla (M) are indicated.
(A) Fetal ovary (28 weeks of development); c-KIT (red cytoplasmic and membranous signal), positive in both immature oocytes and oocytes
involved in folliculogenesis. (B) Fetal ovary (same case); c-KIT. Note staining of both immature oocytes (arrow) and primordial follicles
(arrowhead). (C) Fetal ovary (same case); E-cadherin (brown-reddish membranous signal). (D) Fetal ovary (same case); E-cadherin. (E) Fetal
ovary (same case); b-catenin (brown-reddish signal) is seen in oocytes at different stages of folliculogenesis. (F) Fetal ovary (same case);
b-catenin. Note strong submembranous signal intensity in the primordial follicles (arrow), suggesting formation of an E-cadherin–catenin
complex. (G) Fetal ovary (22 weeks of development); VASA (red cytoplasmic signal), seen both in germ cells of all stages of development.
(H) Fetal ovary (same case); VASA. Magnifications: left panels £200, right panels £400.

H.Stoop et al.

1472



In the following paragraphs, the most interesting findings

of the individual markers included in this study will be dis-

cussed in more detail.

To assess proliferation, we used Ki-67, a nuclear protein

that is present in all phases of the cell cycle, but is absent in

G0-phase cells (Gerdes et al., 1984). Overall expression of

Ki-67 in both germ cells and cells of non-germ cell origin

(mostly interstitial cells and granulosa cells) was highest in

the earliest case investigated (15.5 weeks), and decreased

steadily throughout the second and third trimester. Around

term, almost all germ cells (mostly oocytes in primordial fol-

licles) and the majority of cells of non-germ cell origin have

entered a quiescent phase. Expression of Ki-67 was markedly

higher in the cortex than in the medulla at earlier ages,

whereas no differences between the two regions were found

during the third trimester (Table II). To assess the proportion

of germ cells of overall Ki-67 positive cells and examine the

percentage of proliferating germ cells, we performed double-

Figure 4. Overview of the data currently available from the literature on the expression of different antigens in germ cells during female
intrauterine development (black bars), compared with findings of this study (grey bars). Heights of grey bars represent numbers of germ cells
expressing the individual factor at different developmental ages.

Figure 5. Progression of markers during germ cell maturation from oogonia to primordial follicles during the pre- and perinatal periods.
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stainings using a combination of PLAP and Ki-67. Of all

cells positive for Ki-67, ,50% were early germ cells. The

percentage of proliferating versus quiescent germ cells was

45 to 50% at 15.5 and 20 weeks, and between 37 and 40%

of the few early germ cells found at week 28 gestation

and 3 weeks after birth respectively. This indicates that

immature germ cells at early stages show strong proliferation

around weeks 15.5 to 20, whereas at later ages both the num-

ber and the fraction of proliferating germ cells decreases. At

term, the expansion of germ cells has almost ceased. This

finding is in line with earlier reports on germ cell numbers

during the prenatal period (for review, see Rabinovici and

Jaffe, 1990). Interestingly, a small number of oocytes in pri-

mordial follicles showed presence of Ki-67 in the nucleolus.

Similar findings have been reported previously, suggesting a

role of this factor not only during mitosis, but also during

meiosis (Wrobel et al., 1996; Traut et al., 2002). The number

of positive meiotic cells was too small to influence the over-

all conclusion, and did not allow conclusions regarding poss-

ible physiological meaning.

Alkaline phosphatases are regarded as archetypal onco-

fetal proteins. They are detectable at the mammalian blasto-

cyst stage and have been described in germ cells of human

embryos of ,4 weeks gestational age (Pinkerton et al.,

1961). PLAP expression has been described in primordial

germ cells at 8–13 weeks and at later ages in human oogonia

not yet engaged in cell–cell interactions with somatic cells,

whereas ovaries of neonates and infants were devoid of any

immunopositivity (Hustin et al., 1990; Gould et al., 2000).

Our finding that PLAP expression is restricted to early germ

cells, most likely oogonia, is in line with these previous

reports. The highest expression was seen in the cortex, where

the number of positive cells decreased steadily with advan-

cing age. In the medulla, differences at different ages were

less pronounced after week 20. In our study, PLAP was still

occasionally detected in germ cells of neonates shortly after

birth, albeit at very low numbers.

OCT3/4 is a transcriptional regulator, expressed exclu-

sively in pluripotent human embryonic stem cells and germ

cells, including PGC (Goto et al., 1999; Hansis et al., 2000).

In addition, presence of OCT3/4 has been described in germ

cell tumour cells with pluripotent potential such as embryo-

nal carcinoma and seminomas (Looijenga et al., 2003). In

fetal human testes, OCT3/4 has been found to be highly

expressed in PGC between weeks 17 and 24 and to a lesser

extent at later stages (Looijenga et al., 2003). Expression of

OCT3/4 in normal and dysgenetic human ovaries has been

reported recently (Rajpert-De Meyts et al., 2004). In our ana-

lysis, OCT3/4 was occasionally seen in early oocytes, but

never in germ cells involved in folliculogenesis, indicating

that human female germ cells irreversibly lose pluripotency

once they progress to meiosis and engage in a close cell–cell

interaction with granulosa cells. It is therefore tempting to

speculate that both the processes of cell–cell interaction and

down-regulation of OCT3/4 are important for germ cell

maturation. It should be noted that this is different from the

situation found in mouse follicles, where germ cells after

completion of meiotic prophase I express OCT3/4 (see Table

IV) (Pesce et al., 1998). However, the exact mechanisms of

interaction are not yet understood, and deserve further inves-

tigation. In this context it is interesting that ovarian teratomas

originate from germ cells at different stages of meiosis (Surti

et al., 1990). The finding that these tumours show a restricted

potential to differentiate and exclusively demonstrate somatic

differentiation is in line with previous reports that the pre-

sence of OCT3/4 in embryonic stem cells is crucial to keep

these cells in an undifferentiated state (Niwa et al., 2000).

We therefore speculate that ovarian teratomas arise from

germ cells that have already lost expression of OCT3/4. Our

findings demonstrate the value of both PLAP and OCT3/4

for the characterization of immature germ cells in the female

gonad and indicate that these markers can be useful for the

identification of developmentally arrested germ cells in

pathological conditions, e.g. in dysgenetic gonads, as has

been described recently (Rajpert-De Meyts et al., 2004).

VASA is a member of the DEAD box family of RNA heli-

cases and is specifically expressed in the germ cell lineage

(Castrillon et al., 2000). Furthermore, VASA expression has

been detected by immunohistochemistry in migratory PGC at

gestational week 7 and in germ cells both before and after

birth (Castrillon et al., 2000). It is most abundantly expressed

in postmeiotic germ cells, i.e. in males in spermatocytes and

in females in mature oocytes. VASA has also been described

in testicular germ cell tumours retaining germ cell

characteristics (Zeeman et al., 2002). Interestingly, in murine

embryonic stem cells, expression of Mvh, the mouse VASA

homologue, has been described as an early event in the com-

Table IV. Comparison of gene expression of female human and mouse
germ cells during maturation

Marker Early
postmigratory
germ cells (pre-
meiotic)

Maturing germ
cells

Late germ cells
(post-meiotic
prophase I)

Human Mouse Human Mouse Human Mouse

OCT3/4 þþ þþ*,a þ /2† 2a,b ?† þb

c-KIT þ þ*,a þþ 2*,a þþ þc

VASA þ þ*,a þþ þþ*,a þþd þþ e

*Results are based on RT–PCR (expression of mRNA); all other results are
based on immunohistochemistry.
†Note that the exact time-point of down-regulation of OCT3/4 with regards
to onset of meiosis has not yet been established in human oocytes. We could
not detect re-expression of OCT3/4 in primary and secondary follicles of 34
adult women (data not shown). However, the observation that OCT3/4
mRNA is not present in earlier stages of folliculogenesis but can be detected
both in bovine and human mature oocytes and preimplantation embryos
(Daniels et al., 2000; Huntriss et al., 2002) warrants investigation at what
stage this protein is re-expressed in mature/ovulating oocytes or during
fertilization.
aReferences: Hubner et al. (2003);
bPesce et al. (1998);
cHorie et al. (1991);
dCastrillon et al. (2000);
eToyooka et al. (2000).
The expression of a number of markers in human female germ cells (early
postmigratory cells and cells at different stages of maturation), investigated
in this analysis, is compared to data from the literature on the expression of
these markers in mouse germ cells at comparable stages of maturation. The
most striking difference between human and mouse germ cells is seen in
expression of c-KIT, which is down-regulated in the mouse during oocyte
maturation, but remains expressed in human oocytes throughout maturation.

H.Stoop et al.

1474



mitment of stem cells to the germ cell lineage (Toyooka

et al., 2000, 2003). In our study, expression of VASA has

been found both in germ cells at all gestational ages. In

accordance with previous reports (Castrillon et al., 2000),

staining intensity was stronger in maturing oocytes than

oogonia. Our results illustrate the usefulness of this protein

as a marker of germ cells at all stages of development and

allow an estimation of germ cell numbers at different ages.

c-KIT, b-catenin, and E-cadherin are all involved in cell

signalling and cell–cell interaction. c-KIT is a type III recep-

tor tyrosine kinase found on early germ cells, whereas the

ligand stem cell factor (SCF or KIT-L) is present in granu-

losa cells (Matzuk et al., 2002, for review). The c-KIT/SCF

system has been found to be involved in survival and pro-

liferation of migrating germ cells in mice (McLaren, 1992).

In human intrauterine gonadogenesis, c-KIT expression has

been described in female PGC at the period of arrival of

PGC at the gonadal ridges at week 7 and later between 13

and 21 weeks of gestational age (Horie et al., 1993; Jørgen-

sen et al., 1995; Robinson et al., 2001). During folliculogen-

esis, c-KIT has been postulated to play a role in germ cell

survival, possibly by up-regulating Mcl-1, an anti-apoptotic

member of the Bcl-2 family (Hartley et al., 2002).

Whereas some data are available on the cadherin–catenin

complex in mouse PGC development and oocyte maturation

(Ohsugi et al., 1999; Di Carlo and De Felici, 2000), little is

known about the role of these factors in human germ cell devel-

opment. In an earlier analysis, the presence of E-cadherin on

human oocytes has been demonstrated (Campbell et al., 1995).

Here we show that c-KIT, b-catenin and E-cadherin are all

present in germ cells throughout all stages of female intra-

uterine development. The presence of these factors not only in

maturing oocytes and germ cells during folliculogenesis, but

also in oogonia could be demonstrated by double-stainings

combining markers for early germ cells such as OCT3/4 and

PLAP with c-KIT and b-catenin. As oogonia are often found in

clusters, these factors seem to be involved in signalling between

neighbouring immature germ cells. In primordial follicles,

expression of these factors was predominantly seen in oocytes

at the site of cell–cell interaction with granulosa cells. This

suggests that cell–cell contacts play an important role, both for

immature germ cells and later between oocytes and surrounding

granulosa cells. In fact, E-cadherin has been reported to be

required for germ cell determination in PGC (Okamura et al.,

2003), and in oocyte growth and acquisition of meiotic compe-

tence in mice (Carabatsos et al., 2000). The functional import-

ance of E-cadherin has further been demonstrated by

dissociation/reassociation experiments in a mouse model: disso-

ciated cells from gonads were unable to reform their initial

contacts when cultured in the presence of an antibody to

E-cadherin (Mackay et al., 1999).

The total numbers of germ cells seen in one visual field, as

assessed by either c-KIT, b-catenin or VASA at different

gestational ages (see Figure 1), are in accordance with pre-

vious reports, where a steady decrease of germ cells from

around weeks 18–20 gestational age resulted in numbers that

were only one-sixth of peak values at term (Baker, 1963).

We therefore conclude that assessment of cell numbers in

one representative visual field at magnification £ 200 and

including comparable surface areas of cortical and medullary

areas is a reliable method for semiquantitative analyses. Our

results allow some interesting comparisons with data on

mouse germ cell maturation (see Table IV).

Taken together, our data provide a number of interesting

findings regarding the development and differentiation of

human germ cells in the fetal ovary. Immature germ cells are

characterized by expression of PLAP and show pluripotent

potential, as is illustrated by the expression of OCT3/4.

During the first part of the second trimester included in our

study (gestational ages of weeks 15.5–20), the number of

immature germ cells is high, and the pool of these cells

decreases significantly after weeks 22–24. In accordance

with previous reports, regional differences in the number of

immature germ cells were found when comparing the cortex

and medulla of the ovary. This finding supports the model of

compartmentalization, in which the cortex is the area where

expansion of immature germ cells take place, the medulla

providing the environment needed for germ cell maturation.

Accompanying the gradual shift from oogonia and early

oocytes to germ cells engaged in formation of primordial fol-

licles, loss of expression of first PLAP and consecutively

OCT3/4 can be observed. Interestingly, in male fetal germ

cells loss of pluripotency as judged by loss of OCT3/4 is

observed at the time when gonocytes become attached to the

basal membrane of the seminiferous tubules and come into

close contact with nurturing Sertoli cells (Honecker et al.,

2004). As down-regulation of OCT3/4 in female germ cells

occurs at a time when oocytes become surrounded by granu-

losa cells and start to form primordial follicles, a major role

of cell–cell interactions in the maturation of germ cells in

both sexes can be postulated. Expression of c-KIT, b-catenin,

and E-cadherin in germ cells at all stages of germ cell devel-

opment points towards a role of these factors for germ cell

survival and maturation. Our findings help to define normal

germ cell development and maturation in the human fetal

ovary and will serve as a reference for further analyses inves-

tigating both normal and pathological processes in germ cell

maturation, i.e. in dysgenetic gonads or in individuals show-

ing chromosomal aberrations (Kersemaekers et al., 2005,

M.Cools et al., unpublished data).

Acknowledgements

We thank Diego Castrillon, Department of Pathology, University of
Texas Southwestern Medical Center, Dallas, USA, for providing the
polyclonal VASA antibody; Axel Themmen, Department of Internal
Medicine, Erasmus MC, Rotterdam, The Netherlands, for critically
reading the manuscript; and F.v.d. Panne for technical assistance
with the illustrations. This work was supported by the Dutch Cancer
Society (H.S., L.H.J.L.), Deutsche Krebshilfe, Dr Mildred Scheel
Stiftung (F.H.), and the European Society for Pediatric Endocrin-
ology, ESPE (M.C.).

References

Baker TG (1963) A quantitative and cytological study of germ cells in
human ovaries. Proc R Soc Lond B Biol Sci 158,417–433.

Campbell S, Swann HR, Seif MW, Kimber SJ and Aplin JD (1995) Cell
adhesion molecules on the oocyte and preimplantation human embryo.
Hum Reprod 10,1571–1578.

Differentiation of human female germ cells

1475



Carabatsos MJ, Sellitto C, Goodenough DA and Albertini DF (2000)
Oocyte-granulosa cell heterologous gap junctions are required for the
coordination of nuclear and cytoplasmic meiotic competence. Dev Biol
226,167–179.

Castrillon DH, Quade BJ, Wang TY, Quigley C and Crum CP (2000) The
human VASA gene is specifically expressed in the germ cell lineage. Proc
Natl Acad Sci USA 97,9585–9590.

Daniels R, Hall V and Trounson AO (2000) Analysis of gene transcription in
bovine nuclear transfer embryos reconstructed with granulosa cell nuclei.
Biol Reprod 63,1034–1040.

De Pol A, Vaccina F, Forabosco A, Cavazzuti E and Marzona L (1997)
Apoptosis of germ cells during human prenatal oogenesis. Hum Reprod
12,2235–2241.

Di Carlo A and De Felici M (2000) A role for E-cadherin in mouse primor-
dial germ cell development. Dev Biol 226,209–219.

Donovan PJ (1998) The germ cell—the mother of all stem cells. Int J Dev
Biol 42,1043–1050.

Falin LI (1969) The development of genital glands and the origin of germ
cells in human embryogenesis. Acta Anat (Basel) 72,195–232.

Forabosco A, Sforza C, De Pol A, Vizzotto L, Marzona L and Ferrario VF
(1991) Morphometric study of the human neonatal ovary. Anat Rec
231,201–208.

Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U and Stein H (1984)
Cell cycle analysis of a cell proliferation-associated human nuclear antigen
defined by the monoclonal antibody Ki-67. J Immunol 133,1710–1715.

Gondos B (1985) Development of the reproductive organs. Ann Clin Lab Sci
15,363–373.

Goto T, Adjaye J, Rodeck CH and Monk M (1999) Identification of genes
expressed in human primordial germ cells at the time of entry of the
female germ line into meiosis. Mol Hum Reprod 5,851–860.

Gould DA, Moscoso GJ, Young MP and Barton DP (2000) Human first tri-
mester fetal ovaries express oncofetal antigens and steroid receptors. J Soc
Gynecol Invest 7,131–138.

Hansis C, Grifo JA and Krey LC (2000) Oct-4 expression in inner cell mass
and trophectoderm of human blastocysts. Mol Hum Reprod 6,999–1004.

Hartley PS, Bayne RA, Robinson LL, Fulton N and Anderson RA (2002)
Developmental changes in expression of myeloid cell leukemia-1 in
human germ cells during oogenesis and early folliculogenesis. J Clin
Endocrinol Metab 87,3417–3427.

Honecker F, Stoop H, De Krijger RR, Lau Y-FC, Bokemeyer C and Looi-
jenga LHJ (2004) Pathobiological implications of the expression of mar-
kers of testicular carcinoma in situ by fetal germ cells. J Pathol
203,849–857.

Horie K, Takakura K, Taii S, Narimoto K, Noda Y, Nishikawa S, Nakayama
H, Fujita J and Mori T (1991) The expression of c-kit protein during
oogenesis and early embryonic development. Biol Reprod 45,547–552.

Horie K, Fujita J, Takakura K, Kanzaki H, Suginami H, Iwai M, Nakayama
H and Mori T (1993) The expression of c-kit protein in human adult and
fetal tissues. Hum Reprod 8,1955–1962.

Hubner K, Fuhrmann G, Christenson LK, Kehler J, Reinbold R, De La
Fuente R, Wood J, Strauss JF, 3rd, Boiani M and Scholer HR (2003) Deri-
vation of oocytes from mouse embryonic stem cells. Science
300,1251–1256.

Huntriss J, Gosden R, Hinkins M, Oliver B, Miller D, Rutherford AJ and
Picton HM (2002) Isolation, characterization and expression of the human
Factor In the Germline alpha (FIGLA) gene in ovarian follicles and
oocytes. Mol Hum Reprod 8,1087–1095.

Hustin J, Gillerot Y, Collette J and Franchimont P (1990) Placental alkaline
phosphatase in developing normal and abnormal gonads and in germ-cell
tumours. Virchows Arch 417,67–72.

Jørgensen N, Rajpert-De Meyts E, Graem N, Müller J, Giwercman A and
Skakkebæk NE (1995) Expression of immunohistochemical markers for
testicular carcinoma in situ by normal fetal germ cells. Lab Invest
72,223–231.

Kersemaekers AM, Honecker F, Cools M, Stoop H, Molier M, Wolffenbuttel
KP, Bokemeyer C, Li Y, Lau Y-FC, Oosterhuis JW and Looijenga LHJ
(2005) Identification of germ cells at risk for neoplastic transformation in
gonadoblastomas: an immunohistochemical study for OCT3/4 and TSPY.
Hum Pathol in press.

Konishi I, Fujii S, Okamura H, Parmley T and Mori T (1986) Development
of interstitial cells and ovigerous cords in the human fetal ovary: an ultra-
structural study. J Anat 148,121–135.

Kurilo LF (1981) Oogenesis in antenatal development in man. Hum Genet
57,86–92.

Looijenga LHJ, Stoop H, De Leeuw PJC, De Gouveia Brazao CA, Gillis
AJM, Van Roozendaal KEP, Van Zoelen EJJ, Weber RFA, Wolffenbuttel
KP, Van Dekken H et al. (2003) POU5F1 (OCT3/4) identifies cells with
pluripotent potential in human germ cell tumors. Cancer Res
63,2244–2250.

Mackay S, Nicholson CL, Lewis SP and Brittan M (1999) E-cadherin in the
developing mouse gonad. Anat Embryol (Berl) 200,91–102.

Matzuk MM, Burns KH, Viveiros MM and Eppig JJ (2002) Intercellular
communication in the mammalian ovary: oocytes carry the conversation.
Science 296,2178–2180.

McLaren A (1992) Development of primordial germ cells in the mouse.
Andrologia 24,243–247.

Niwa H, Miyazaki J and Smith AG (2000) Quantitative expression of Oct-
3/4 defines differentiation, dedifferentiation or self-renewal of ES cells.
Nat Genet 24,372–376.

Ohsugi M, Butz S and Kemler R (1999) Beta-catenin is a major tyrosine-
phosphorylated protein during mouse oocyte maturation and preimplanta-
tion development. Dev Dyn 216,168–176.

Okamura D, Kimura T, Nakano T and Matsui Y (2003) Cadherin-mediated
cell interaction regulates germ cell determination in mice. Development
130,6423–6430.

Pesce M, Wang X, Wolgemuth DJ and Schøler H (1998) Differential
expression of the Oct-4 transcription factor during mouse germ cell differ-
entiation. Mech Dev 71,89–98.

Pinkerton JH, Mc KD, Adams EC and Hertig AT (1961) Development of the
human ovary—a study using histochemical techniques. Obstet Gynecol
18,152–181.

Rabinovici J and Jaffe RB (1990) Development and regulation of growth and
differentiated function in human and subhuman primate fetal gonads.
Endocr Rev 11,532–557.

Rajpert-De Meyts E, Hanstein R, Jorgensen N, Graem N, Vogt PH and Skak-
kebaek NE (2004) Developmental expression of POU5F1 (OCT3/4) in
normal and dysgenetic gonads. Hum Reprod 19,1338–1344.

Robinson LL, Gaskell TL, Saunders PT and Anderson RA (2001) Germ cell
specific expression of c-kit in the human fetal gonad. Mol Hum Reprod
7,845–852.

Shi SR, Key ME and Kalra KL (1991) Antigen retrieval in formalin-fixed,
paraffin-embedded tissues: an enhancement method for immunohistochem-
ical staining based on microwave oven heating of tissue sections. J Histo-
chem Cytochem 39,741–758.

Stoop H, Van Gurp RHJ,LM, De Krijger R, Geurts van Kessel A, Koberle B,
Oosterhuis JW and Looijenga LHJ (2001) Reactivity of germ cell matu-
ration stage-specific markers in spermatocytic seminoma: diagnostic and
etiological implications. Lab Invest 81,919–928.

Surti U, Hoffner L, Chakravarti A and Ferrell RE (1990) Genetics and
biology of human ovarian teratomas. I. Cytogenetic analysis and mechan-
ism of origin. Am J Hum Genet 47,635–643.

Toyooka Y, Tsunekawa N, Takahashi Y, Matsui Y, Satoh M and Noce T
(2000) Expression and intracellular localization of mouse Vasa-homologue
protein during germ cell development. Mech Dev 93,139–149.

Toyooka Y, Tsunekawa N, Akasu R and Noce T (2003) Embryonic stem
cells can form germ cells in vitro. Proc Natl Acad Sci USA
100,11457–11462.

Traut W, Endl E, Scholzen T, Gerdes J and Winking H (2002) The temporal
and spatial distribution of the proliferation associated Ki-67 protein during
female and male meiosis. Chromosoma 111,156–164.

Witschi E (1948) Migration of the germ cells of the human embryos from
the yolk sac to the primitive gonadal folds. Contrib Embryol 209,67–80.

Wrobel KH, Bickel D and Kujat R (1996) Immunohistochemical study of
seminiferous epithelium in adult bovine testis using monoclonal antibodies
against Ki-67 protein and proliferating cell nuclear antigen (PCNA). Cell
Tissue Res 283,191–201.

Zeeman AM, Stoop H, Boter M, Gillis AJM, Castrillon DH, Oosterhuis JW
and Looijenga LHJ (2002) VASA is a specific marker for both normal and
malignant human germ cells. Lab Invest 82,159–166.

Submitted on February 19, 2004; resubmitted on December 24, 2004;
accepted on January 20, 2005

H.Stoop et al.

1476


