275 research outputs found

    Doping of a One-Dimensional Mott Insulator: Photoemision and Optical Studies of Sr2_2CuO3+ÎŽ_{3+\delta}

    Get PDF
    The spectral properties of a one-dimensional (1D) single-chain Mott insulator Sr2_2CuO3_{3} have been studied in angle-resolved photoemission and optical spectroscopy, at half filling and with small concentrations of extra charge doped into the chains via high oxygen pressure growth. The single- particle gap is reduced with oxygen doping, but the metallic state is not reached. The bandwidth of the charge-transfer band increases with doping, while the state becomes narrower, allowing unambiguous observation of separated spinon and holon branches in the doped system. The optical gap is not changed upon doping, indicating that a shift of chemical potential rather than decrease of corelation gap is responsible for the apparent reduction of the photoemission gap.Comment: 4 pages, 2 figure

    Coherence, incoherence and scaling along the c axis of YBa_2Cu_3O_{6+x}

    Full text link
    The optical properties of single crystals of YBa_2Cu_3O_{6+x} have been examined along the c axis above and below the critical temperature (T_c) for a wide range of oxygen dopings. The temperature dependence of the optically-determined value of the dc conductivity (\sigma_{dc}) in the normal state suggests a crossover from incoherent (hopping-type) transport at lower oxygen dopings (x \lesssim 0.9) to more coherent anisotropic three-dimensional behavior in the overdoped (x \approx 0.99) material at temperatures close to T_c. The assumption that superconductivity occurs along the c axis through the Josephson effect yields a scaling relation between the strength of the superconducting condensate (\rho_{s,c}, a measure of the number of superconducting carriers), the critical temperature, and the normal-state c-axis value for \sigma_{dc} just above T_c; \rho_{s,c} \propto \sigma_{dc} T_c. This scaling relation is observed along the c axis for all oxygen dopings, as well as several other cuprate materials. However, the agreement with the Josephson coupling model does not necessarily imply incoherent transport, suggesting that these materials may indeed be tending towards coherent behavior at the higher oxygen dopings.Comment: Six pages with four figures and one tabl

    LEC GaAs for integrated circuit applications

    Get PDF
    Recent developments in liquid encapsulated Czochralski techniques for the growth of semiinsulating GaAs for integrated circuit applications have resulted in significant improvements in the quality and quantity of GaAs material suitable for device processing. The emergence of high performance GaAs integrated circuit technologies has accelerated the demand for high quality, large diameter semiinsulating GaAs substrates. The new device technologies, including digital integrated circuits, monolithic microwave integrated circuits and charge coupled devices have largely adopted direct ion implantation for the formation of doped layers. Ion implantation lends itself to good uniformity and reproducibility, high yield and low cost; however, this technique also places stringent demands on the quality of the semiinsulating GaAs substrates. Although significant progress was made in developing a viable planar ion implantation technology, the variability and poor quality of GaAs substrates have hindered progress in process development

    Two-dimensional conical dispersion in ZrTe5 evidenced by optical spectroscopy

    Full text link
    Zirconium pentatelluride was recently reported to be a 3D Dirac semimetal, with a single conical band, located at the center of the Brillouin zone. The cone's lack of protection by the lattice symmetry immediately sparked vast discussions about the size and topological/trivial nature of a possible gap opening. Here we report on a combined optical and transport study of ZrTe5, which reveals an alternative view of electronic bands in this material. We conclude that the dispersion is approximately linear only in the a-c plane, while remaining relatively flat and parabolic in the third direction (along the b axis). Therefore, the electronic states in ZrTe5 cannot be described using the model of 3D Dirac massless electrons, even when staying at energies well above the band gap 6 meV found in our experiments at low temperatures.Comment: Physical Review Letters 122, 217402 (2019). Corrected acknowledgment

    Infrared properties of Mg1−x_{1-x}Alx(_x(B1−y_{1-y}Cy_{y})2_2 single crystals in the normal and superconducting state

    Full text link
    The reflectivity R(ω)R (\omega) of abab-oriented Mg1−x_{1-x}Alx_x(B1−y_{1-y }Cy_y)2_2 single crystals has been measured by means of infrared microspectroscopy for 1300<ω<170001300<\omega<17000 cm−1^{-1}. An increase with doping of the scattering rates in the π\pi and σ\sigma bands is observed, being more pronounced in the C doped crystals. The σ\sigma-band plasma frequency also changes with doping due to the electron doping, while the π\pi-band one is almost unchanged. Moreover, a σ→σ\sigma\to\sigma interband excitation, predicted by theory, is observed at ωIB≃0.47\omega_{IB} \simeq 0.47 eV in the undoped sample, and shifts to lower energies with doping. By performing theoretical calculation of the doping dependence ωIB\omega_{IB}, the experimental observations can be explained with the increase with electron doping of the Fermi energy of the holes in the σ\sigma-band. On the other hand, the σ\sigma band density of states seems not to change substantially. This points towards a TcT_c reduction driven mainly by disorder, at least for the doping level studied here. The superconducting state has been also probed by infrared synchrotron radiation for 30<ω<15030<\omega<150 cm−1^{-1} in one pure and one C-doped sample. In the undoped sample (TcT_c = 38.5 K) a signature of the π\pi-gap only is observed. At yy = 0.08 (TcT_c = 31.9 K), the presence of the contribution of the σ\sigma-gap indicates dirty-limit superconductivity in both bands.Comment: 12 pages, 9 figure

    The c axis optical conductivity of layered systems in the superconducting state

    Full text link
    In this paper, we discuss the c axis optical conductivity Re [sigma_c(omega)] in the high T_c superconductors, in the superconducting state. The basic premise of this work is that electrons travelling along the c axis between adjacent CuO_2 layers must pass through several intervening layers. In earlier work we found that, for weak inter-layer coupling, it is preferable for electrons to travel along the c axis by making a series of interband transitions rather than to stay within a single (and very narrow) band. Moreover, we found that many of the properties of the normal state optical conductivity, including the pseudogap could be explained by interband transitions. In this work we examine the effect of superconductivity on the interband conductivity. We find that, while the onset of superconductivity is clearly evident in the spectrum, there is no clear signature of the symmetry of the superconducting order parameter.Comment: 6 pages, 4 figure

    Non-uniform carrier density in Cd3_3As2_2 evidenced by optical spectroscopy

    Full text link
    We report the detailed optical properties of Cd3_3As2_2 crystals in a wide parameter space: temperature, magnetic field, carrier concentration and crystal orientation. We investigate high-quality crystals synthesized by three different techniques. In all the studied samples, independently of how they were prepared and how they were treated before the optical experiments, our data indicate conspicuous fluctuations in the carrier density (up to 30%). These charge puddles have a characteristic scale of 100 ÎŒ\mum, they become more pronounced at low temperatures, and possibly, they become enhanced by the presence of crystal twinning. The Drude response is characterized by very small scattering rates (∌1\sim 1 meV) for as-grown samples. Mechanical treatment, such as cutting or polishing, influences the optical properties of single crystals, by increasing the Drude scattering rate and also modifying the high frequency optical response. Magneto-reflectivity and Kerr rotation are consistent with electron-like charge carriers and a spatially non-uniform carrier density.Comment: Accepted in Physical Review

    Marginal Fermi liquid analysis of 300 K reflectance of Bi2Sr2CaCu2O8+x

    Full text link
    We use 300 K reflectance data to investigate the normal-state electrodynamics of the high temperature superconductor Bi2_{2}Sr2_{2}CaCu2_{2}O8+ÎŽ_{8+\delta} over a wide range of doping levels. The data show that at this temperature the free carriers are coupled to a continuous spectrum of fluctuations. Assuming the Marginal Fermi Liquid (MFL) form as a first approximation for the fluctuation spectrum, the doping-dependent coupling constant λ(p)\lambda (p) can be estimated directly from the slope of the reflectance spectrum. We find that λ(p)\lambda (p) decreases smoothly with the hole doping level, from underdoped samples with p=0.103 p=0.103 (Tc=67T_c = 67 K) where λ(p)=0.93\lambda (p)= 0.93 to overdoped samples with p=0.226p=0.226, (Tc=60T_c= 60 K) where λ(p)=0.53\lambda(p)= 0.53. An analysis of the intercept and curvature of the reflectance spectrum shows deviations from the MFL spectrum symmetrically placed at the optimal doping point p=0.16p=0.16. The Kubo formula for the conductivity gives a better fit to the experiments with the MFL spectrum up to 2000 cm−1^{-1} and with an additional Drude component or an additional Lorentz component up to 7000 cm−1^{-1}. By comparing three different model fits we conclude that the MFL channel is necessary for a good fit to the reflectance data. Finally, we note that the monotonic variation of the reflectance slope with doping provides us with an independent measure of the doping level for the Bi-2212 system.Comment: 11 pages, 11 figure
    • 

    corecore