134 research outputs found

    Routes for breaching and protecting genetic privacy

    Full text link
    We are entering the era of ubiquitous genetic information for research, clinical care, and personal curiosity. Sharing these datasets is vital for rapid progress in understanding the genetic basis of human diseases. However, one growing concern is the ability to protect the genetic privacy of the data originators. Here, we technically map threats to genetic privacy and discuss potential mitigation strategies for privacy-preserving dissemination of genetic data.Comment: Draft for comment

    The role and scope of practice of midwives in humanitarian settings:a systematic review and content analysis

    Get PDF
    Abstract Background Midwives have an essential role to play in preparing for and providing sexual and reproductive health (SRH) services in humanitarian settings due to their unique knowledge and skills, position as frontline providers and geographic and social proximity to the communities they serve. There are considerable gaps in the international guidance that defines the scope of practice of midwives in crises, particularly for the mitigation and preparedness, and recovery phases. We undertook a systematic review to provide further clarification of this scope of practice and insights to optimise midwifery performance. The review aimed to determine what SRH services midwives are involved in delivering across the emergency management cycle in humanitarian contexts, and how they are working with other professionals to deliver health care. Methods Four electronic databases and the websites of 33 organisations were searched between January and March 2017. Papers were eligible for inclusion if they were published in English between 2007 and 2017 and reported primary research pertaining to the role of midwives in delivering and performing any component of sexual and/or reproductive health in humanitarian settings. Content analysis was used to map the study findings to the Minimum Initial Service Package (MISP) for SRH across the three phases of the disaster management cycle and identify how midwives work with other members of the health care team. Results Fourteen studies from ten countries were included. Twelve studies were undertaken in conflict settings, and two were conducted in the context of the aftermath of natural disasters. We found a paucity of evidence from the research literature that examines the activities and roles undertaken by midwives across the disaster management cycle. This lack of evidence was more apparent during the mitigation and preparedness, and recovery phases than the response phase of the disaster management cycle. Conclusion Research-informed guidelines and strategies are required to better align the scope of practice of midwives with the objectives of multi-agency guidelines and agreements, as well as the activities of the MISP, to ensure that the potential of midwives can be acknowledged and optimised across the disaster management cycle

    Cdc20 Is Critical for Meiosis I and Fertility of Female Mice

    Get PDF
    Chromosome missegregation in germ cells is an important cause of unexplained infertility, miscarriages, and congenital birth defects in humans. However, the molecular defects that lead to production of aneuploid gametes are largely unknown. Cdc20, the activating subunit of the anaphase-promoting complex/cyclosome (APC/C), initiates sister-chromatid separation by ordering the destruction of two key anaphase inhibitors, cyclin B1 and securin, at the transition from metaphase to anaphase. The physiological significance and full repertoire of functions of mammalian Cdc20 are unclear at present, mainly because of the essential nature of this protein in cell cycle progression. To bypass this problem we generated hypomorphic mice that express low amounts of Cdc20. These mice are healthy and have a normal lifespan, but females produce either no or very few offspring, despite normal folliculogenesis and fertilization rates. When mated with wild-type males, hypomorphic females yield nearly normal numbers of fertilized eggs, but as these embryos develop, they become malformed and rarely reach the blastocyst stage. In exploring the underlying mechanism, we uncover that the vast majority of these embryos have abnormal chromosome numbers, primarily due to chromosome lagging and chromosome misalignment during meiosis I in the oocyte. Furthermore, cyclin B1, cyclin A2, and securin are inefficiently degraded in metaphase I; and anaphase I onset is markedly delayed. These results demonstrate that the physiologically effective threshold level of Cdc20 is high for female meiosis I and identify Cdc20 hypomorphism as a mechanism for chromosome missegregation and formation of aneuploid gametes

    Accreting Millisecond X-Ray Pulsars

    Full text link
    Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer; [revision with literature updated, several typos removed, 1 new AMXP added

    Representative Landscapes in the Forested Area of Canada

    Get PDF
    Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada’s land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative—or “exemplar”—from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada’s ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada’s forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach

    The Business Case for Preconception Care: Methods and Issues

    Get PDF
    Only a limited number of economic evaluations have addressed the costs and benefits of preconception care. In order to persuade health care providers, payers, or purchasers to become actively involved in promoting preconception care, it is important to demonstrate the value of doing so through development of a “business case”. Perceived benefits in terms of organizational reputation and market share can be influential in forming a business case. In addition, it is standard to include an economic analysis of financial costs and benefits from the perspective of the provider practice, payer, or purchaser in a business case. The methods, data needs, and other issues involved with preparing an economic analysis of the likely financial return on investment in preconception care are presented here. This is accompanied by a review or case study of economic evaluations of preconception care for women with recognized diabetes. Although the data are not sufficient to draw firm conclusions, there are indications that such care may yield positive financial benefits to health care organizations through reduction in maternal and infant hospitalizations. More work is needed to establish how costs and economic benefits are distributed among different types of organizations. Also, the optimum methods of delivering preconception care for women with diabetes need to be evaluated. Similar assessments should also be conducted for other forms of preconception care, including comprehensive care

    Reverse Engineering of the Spindle Assembly Checkpoint

    Get PDF
    The Spindle Assembly Checkpoint (SAC) is an intracellular mechanism that ensures proper chromosome segregation. By inhibiting Cdc20, a co-factor of the Anaphase Promoting Complex (APC), the checkpoint arrests the cell cycle until all chromosomes are properly attached to the mitotic spindle. Inhibition of Cdc20 is mediated by a conserved network of interacting proteins. The individual functions of these proteins are well characterized, but understanding of their integrated function is still rudimentary. We here describe our attempts to reverse-engineer the SAC network based on gene deletion phenotypes. We begun by formulating a general model of the SAC which enables us to predict the rate of chromosomal missegregation for any putative set of interactions between the SAC proteins. Next the missegregation rates of seven yeast strains are measured in response to the deletion of one or two checkpoint proteins. Finally, we searched for the set of interactions that correctly predicted the observed missegregation rates of all deletion mutants. Remarkably, although based on only seven phenotypes, the consistent network we obtained successfully reproduces many of the known properties of the SAC. Further insights provided by our analysis are discussed

    Muscle Fiber Viability, a Novel Method for the Fast Detection of Ischemic Muscle Injury in Rats

    Get PDF
    Acute lower extremity ischemia is a limb- and life-threatening clinical problem. Rapid detection of the degree of injury is crucial, however at present there are no exact diagnostic tests available to achieve this purpose. Our goal was to examine a novel technique - which has the potential to accurately assess the degree of ischemic muscle injury within a short period of time - in a clinically relevant rodent model. Male Wistar rats were exposed to 4, 6, 8 and 9 hours of bilateral lower limb ischemia induced by the occlusion of the infrarenal aorta. Additional animals underwent 8 and 9 hours of ischemia followed by 2 hours of reperfusion to examine the effects of revascularization. Muscle samples were collected from the left anterior tibial muscle for viability assessment. The degree of muscle damage (muscle fiber viability) was assessed by morphometric evaluation of NADH-tetrazolium reductase reaction on frozen sections. Right hind limbs were perfusion-fixed with paraformaldehyde and glutaraldehyde for light and electron microscopic examinations. Muscle fiber viability decreased progressively over the time of ischemia, with significant differences found between the consecutive times. High correlation was detected between the length of ischemia and the values of muscle fiber viability. After reperfusion, viability showed significant reduction in the 8-hour-ischemia and 2-hour-reperfusion group compared to the 8-hour-ischemia-only group, and decreased further after 9 hours of ischemia and 2 hours of reperfusion. Light- and electron microscopic findings correlated strongly with the values of muscle fiber viability: lesser viability values represented higher degree of ultrastructural injury while similar viability results corresponded to similar morphological injury. Muscle fiber viability was capable of accurately determining the degree of muscle injury in our rat model. Our method might therefore be useful in clinical settings in the diagnostics of acute ischemic muscle injury

    Integrated modeling in urban hydrology: reviewing the role of monitoring technology in overcoming the issue of ‘big data’ requirements

    Get PDF
    Increasingly, the application of models in urban hydrology has undergone a shift toward integrated structures that recognize the interconnected nature of the urban landscape and both the natural and engineered water cycles. Improvements in computational processing during the past few decades have enabled the application of multiple, connected model structures that link previously disparate systems together, incorporating feedbacks and connections. Many applications of integrated models look to assess the impacts of environmental change on physical dynamics and quality of landscapes. Whilst these integrated structures provide a more robust representation of natural dynamics, they often place considerable data requirements on the user, whereby data are required at contrasting spatial and temporal scales which can often transcend multiple disciplines. Concomitantly, our ability to observe complex, natural phenomena at contrasting scales has improved considerably with the advent of increasingly novel monitoring technologies. This has provided a pathway for reducing model uncertainty and improving our confidence in modeled outputs by implementing suitable monitoring regimes. This commentary assesses how component models of an exemplar integrated model have advanced over the past few decades, with a critical focus on the role of monitoring technologies that have enabled better identification of the key physical process. This reduces the uncertainty of processes at contrasting spatial and temporal scales, through a better characterization of feedbacks which then enhances the utility of integrated model applications
    corecore