1,928 research outputs found
Bounded LTL Model Checking with Stable Models
In this paper bounded model checking of asynchronous concurrent systems is
introduced as a promising application area for answer set programming. As the
model of asynchronous systems a generalisation of communicating automata,
1-safe Petri nets, are used. It is shown how a 1-safe Petri net and a
requirement on the behaviour of the net can be translated into a logic program
such that the bounded model checking problem for the net can be solved by
computing stable models of the corresponding program. The use of the stable
model semantics leads to compact encodings of bounded reachability and deadlock
detection tasks as well as the more general problem of bounded model checking
of linear temporal logic. Correctness proofs of the devised translations are
given, and some experimental results using the translation and the Smodels
system are presented.Comment: 32 pages, to appear in Theory and Practice of Logic Programmin
Optimal Scheduling Using Branch and Bound with SPIN 4.0
The use of model checkers to solve discrete optimisation problems is appealing. A model checker can first be used to verify that the model of the problem is correct. Subsequently, the same model can be used to find an optimal solution for the problem. This paper describes how to apply the new PROMELA primitives of SPIN 4.0 to search effectively for the optimal solution. We show how Branch-and-Bound techniques can be added to the LTL property that is used to find the solution. The LTL property is dynamically changed during the verification. We also show how the syntactical reordering of statements and/or processes in the PROMELA model can improve the search even further. The techniques are illustrated using two running examples: the Travelling Salesman Problem and a job-shop scheduling problem
Transition Temperature of a Uniform Imperfect Bose Gas
We calculate the transition temperature of a uniform dilute Bose gas with
repulsive interactions, using a known virial expansion of the equation of
state. We find that the transition temperature is higher than that of an ideal
gas, with a fractional increase K_0(na^3)^{1/6}, where n is the density and a
is the S-wave scattering length, and K_0 is a constant given in the paper. This
disagrees with all existing results, analytical or numerical. It agrees exactly
in magnitude with a result due to Toyoda, but has the opposite sign.Comment: Email correspondence to [email protected] ; 2 pages using REVTe
Model checking object-Z using ASM
A major problem with creating tools for Object-Z is that its high-level abstractions are difficult to deal with directly. Integrating Object-Z with a more concrete notation is a sound strategy. With this in mind, in this paper we introduce an approach to model-checking Object-Z specifications based on first integrating Object-Z with the Abstract State Machine (ASM) notation to get the notation OZ-ASM. We show that this notation can be readily translated into the specification language ASM-SL, a language that can be automatically translated into the language of the temporal logic model checker SMV
Transition temperature of a dilute homogeneous imperfect Bose gas
The leading-order effect of interactions on a homogeneous Bose gas is
theoretically predicted to shift the critical temperature by an amount
\Delta\Tc = # a_{scatt} n^{1/3} T_0 from the ideal gas result T_0, where
a_{scatt} is the scattering length and n is the density. There have been
several different theoretical estimates for the numerical coefficient #. We
claim to settle the issue by measuring the numerical coefficient in a lattice
simulation of O(2) phi^4 field theory in three dimensions---an effective theory
which, as observed previously in the literature, can be systematically matched
to the dilute Bose gas problem to reproduce non-universal quantities such as
the critical temperature. We find # = 1.32 +- 0.02.Comment: 4 pages, submitted to Phys. Rev. Lett; minor changes due to
improvement of analysis in the longer companion pape
The transition temperature of the dilute interacting Bose gas for internal degrees of freedom
We calculate explicitly the variation of the Bose-Einstein
condensation temperature induced by weak repulsive two-body interactions
to leading order in the interaction strength. As shown earlier by general
arguments, is linear in the dimensionless product
to leading order, where is the density and the scattering length. This
result is non-perturbative, and a direct perturbative calculation of the
amplitude is impossible due to infrared divergences familiar from the study of
the superfluid helium lambda transition. Therefore we introduce here another
standard expansion scheme, generalizing the initial model which depends on one
complex field to one depending on real fields, and calculating the
temperature shift at leading order for large . The result is explicit and
finite. The reliability of the result depends on the relevance of the large
expansion to the situation N=2, which can in principle be checked by systematic
higher order calculations. The large result agrees remarkably well with
recent numerical simulations.Comment: 10 pages, Revtex, submitted to Europhysics Letter
The value of 18F-FDG-PET/CT imaging for sinonasal malignant melanoma
The aim this study was to evaluate imaging findings using position emission tomography (PET) in combination with computed tomography (CT) and 18F-fluorodeoxyglucose (18F-FDG) in sinonasal malignant melanoma (SNMM) of the head and neck in a retrospective analysis of a consecutive cohort of patients. 18F-FDG-PET/CT examinations were performed for initial staging and compared with CT or magnetic resonance tomography (MRI), and 18F-FDG-PET alone. Medical records were reviewed retrospectively with regard to the location and the size of the tumor. Furthermore, locoregional and distant metastases with a consecutive change in therapy detected by 18F-FDG-PET/CT were assessed. Ten patients suffering from sinonasal malignant melanoma were staged and followed by 18F-FDG-PET/CT imaging. A total of 34 examinations were obtained. 18F-FDG-PET/CT depicted all primary tumors adequately. Aside from one cerebral metastasis all regional and distant metastases were truly identified by using this method. In summary, if available, 18F-FDG-PET/CT is a valuable imaging modality for staging and re-staging sinonasal malignant melanoma to evaluate expansion of the primary tumor, locoregional disease, and distant metastase
The effect of disorder on the critical temperature of a dilute hard sphere gas
We have performed Path Integral Monte Carlo (PIMC) calculations to determine
the effect of quenched disorder on the superfluid density of a dilute 3D hard
sphere gas. The disorder was introduced by locating set of hard cylinders
randomly inside the simulation cell. Our results indicate that the disorder
leaves the superfluid critical temperature basically unchanged. Comparison to
experiments of helium in Vycor is made.Comment: 4 pages, 4 figure
- …