782 research outputs found

    Evaluation of two models using CERES data for reference evapotranspiration estimation

    Get PDF
    [EN] Evapotranspiration is the most important variable in the Pampas plain. Information provided by sensors onboard satellite missions allows represent the spatial and temporal variability of evapotranspiration, which cannot be achieved using only measurements of weather stations. In this work, the Priestley and Taylor (PT) and FAO Penman Monteith (FAO PM) equations were adapted to estimate the reference evapotranspiration, ET0 , using only CERES satellite products (SYN1 and CldTypHist). In order to evaluate the reference evapotranspiration from CERES, a comparison with in situ measurements was conducted. We used ET data provided by the Oficina de Riesgo Agropecuario, corresponding to 24 stations placed in the Pampean Region of Argentina (2001-2016). Results showed very good agreement between the estimates with CERES products and in situ values, with errors between ±0.8 and ±1.1 mm d–1 and r2 greater than 0.75 at daily scale, and errors between ±14 and ±19 mm month–1 and r2 greater than 0.9, at monthly scale better results were obtained with adapted model FAO PM than PT. Finally, ET0 monthly maps for the Pampean Region of Argentina were elaborated, which allowed knowing the temporal-spatial variation in the validation area. In conclusion, the methods presented here are a suitable alternative to estimate the reference evapotranspiration without requiring ground measurements.[ES] La evapotranspiración es la variable hidrológica de mayor relevancia en la llanura pampeana. La información provista por sensores a bordo de satélites permite representar la variabilidad espacio-temporal de la evapotranspiración, lo cual no es posible lograr utilizando únicamente datos de sitios puntuales de medida. En este trabajo se adaptaron las ecuaciones de Priestley y Taylor (PT) y FAO Penman-Monteith (FAO PM) para obtener la evapotranspiración del cultivo de referencia, ET0 , utilizando únicamente datos de los productos de satélite CERES (SYN1 y CldTypHist). Los resultados obtenidos con los datos CERES se compararon con valores de ET0 provistos por la Oficina de Riesgo Agropecuario de Argentina, a partir de información de 24 estaciones agro-meteorológicas distribuidas en la Región Pampeana de Argentina (2001-2016). Los resultados mostraron muy buena concordancia entre los valores generados con los métodos propuestos y aquellos obtenidos in situ, con errores de entre ±0,8 y ±1,1 mm d–1 y r2 superiores a 0,75 a escala diaria, y errores de entre ±14 y ±19 mm mes–1 y r2 superiores a 0,9, a escala mensual, siendo en general mejores los resultados con el método adaptado de FAO PM respecto al de PT. Finalmente, se elaboraron los mapas promedio mensual de la ET0 para la Región Pampeana de Argentina, los cuales permitieron conocer la variación espacio temporal en el área de validación. En conclusión, los métodos que aquí se presentan constituyen una buena alternativa para el cálculo de la evapotranspiración de referencia, sin necesidad de contar con medidas de terreno.El trabajo se realizó gracias a fondos otorga-dos por la Agencia Nacional de Promoción Científica y Tecnológica de Argentina, PICT 2016-1486- Estudio de la evapotranspiración en la llanura pampeana argentina a partir de datos de satélite (EVAPAMPAS), y el Consejo Nacional de Investigaciones Científicas y Técnicas. Los autores además desean agradecer a la Comisión de Investigaciones Científicas de Buenos Aires, la Universidad Nacional del Centro de la provincia de Buenos Aires, a la Oficina de Riesgo Agropecuario de Argentina, y al Atmospheric Science Data Center de la NASA Langley Research Center por proveer los datos CERES. Además, se agradece a los revisores anónimos que contribuyeron para mejorar el documento.Carmona, F.; Holzman, M.; Rivas, R.; Degano, M.; Kruse, E.; Bayala, M. (2018). Evaluación de dos modelos para la estimación de la evapotranspiración de referencia con datos CERES. Revista de Teledetección. (51):87-98. https://doi.org/10.4995/raet.2018.9259SWORD879851Aliaga, V.S., Ferrelli, F., Piccolo, M.C. 2017. Regionalization of climate over the Argentine Pampas. International Journal of Climatology, 37, 1237-1247. https://doi.org/10.1002/joc.5079Allen R.G., Tasumi M., Trezza R. 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) - model. J. Irrig. Drain. Eng. ASCE, 133, 380-394. https://doi. org/10.1061/(ASCE)0733-9437(2007)133:4(380)Allen, R.G., Pereira, L.S., Raes, D., Smith, M. 1998. FAO Irrigation and Drainage Paper No. 56: Crop Evapotranspiration. (F.W. Resources, Ed.), Irrigation and Drainage. Fao. Retrieved from http://www.kimberly.uidaho.edu/water/fao56/ fao56.pdfAnderson M.C., Norman J.M., Diak G.R., Kustas W.P., Mecikalski J.R. 1997. A twosource time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens Environ, 60, 195-216. https://doi.org/10.1016/S0034-4257(96)00215-5ASCE - EWRI. 2005. The ASCE standardized reference evapotranspiration equation. ASCE-EWRI Standardization of Reference Evapotranspiration Task Comm. Report, January, 2005. http:// www.kimberly.uidaho.edu/water/asceewri/ ascestzdetmain2005.pdf.Bastiaanssen W.G.M., Menenti M., Feddes R.A., Holtslag A.A.M. 1998. A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J. Hydrol, 212-213, 198-212. https://doi.org/10.1016/S0022-1694(98)00253-4Carmona, F., Rivas, R., Ocampo, D., Schirmbeck, J., Holzman, M. 2011. Sensores para la medición y validación de variables hidrológicas a escalas local y regional a partir del balance de energía. Aqua-LAC, Revista del programa hidrológico internacional para América Latina y el Caribe, 3, 26-36.Carmona, F., Rivas, R., Caselles, V. 2013. Estimate of the alpha parameter in an oat crop under rain-fed conditions. Hydrological Processes, 27(19), 2834- 2839. https://doi.org/10.1002/hyp.9415Carmona, F., Rivas, R., Kruse, E. 2017. Estimating daily net radiation in the FAO Penman-Monteith method. Theoretical and Applied Climatology, 129(1-2), 89- 95. https://doi.org/10.1007/s00704-016-1761-6Carmona, F., Orte, P.F., Rivas, R., Wolfram, E., Kruse, E. 2017. Development and Analysis of a New Solar Radiation Atlas for Argentina from Ground-Based Measurements and CERES_SYN1deg data. Egyptian Journal of Remote Sensing and Space Science. (In press). https://doi.org/10.1016/j.ejrs.2017.11.003Degano, M.F. 2017. Evaluación del producto de evapotranspiración global MOD16 con medidas in situ en la región de la Pampa Húmeda, Argentina. Tesis de Maestría. Repositorio DigitalCIC. Facultad de Física, Universidad de Valencia. Disponible en https://digital.cic.gba.gob.ar/ handle/11746/7085Degano F., Rivas R., Sánchez Tomás J.M., Carmona F., Niclós R. 2018. Assessment of the Potential Evapotranspiration MODIS Product Using Ground Measurements in the Pampas. Proceedings of the 2018 IEEE ARGENCON conference.Fisher J.B., Tu K.P., Baldocchi D.D. 2008. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUX- NET sites. Remote Sens. Environ., 112, 901-919. https://doi.org/10.1016/j.rse.2007.06.025Hashimoto, H., Dungan, J.L., White, M.A., Yang, F., Michaelis, A.R., Running, S.W., Nemani, R.R. 2008. Satellite-based estimation of surface vapor pressure deficits using MODIS land surface temperature data. Remote Sensing of Environment, 112(1), 142-155. https://doi.org/10.1016/j.rse.2007.04.016Jensen, M., Burman, R., Allen, R. 1990. Evapotranspiration and irrigation water requirements. Am Soc Civ Eng (ASCE) Manual 70, 332.Jiang L., Islam S. 2001. Estimation of surface evaporation map over southern Great Plains using remote sensing data. Water Resour. Res., 37, 329-340. https://doi.org/10.1029/2000WR900255Jiang, B., Liang, S., Ma, H., Zhang, X., Xiao, Z., Zhao, X., Jia, K., Yao, Y., Jia, A. 2016. GLASS daytime allwave net radiation product: Algorithm development and preliminary validation. Remote Sensing, 8(3), 222. https://doi.org/10.3390/rs8030222Kitoh, A., Kusunoki, S., Nakaegawa, T. 2011. Climate change projections over South America in the late 21st century with the 20 and 60 km mesh Meteorological Research Institute atmospheric general circulation model (MRI-AGCM). Journal of Geophysical Research Atmospheres, 116(6), 1-21. https://doi.org/10.1029/2010JD014920Long D., Longuevergne L., Scanlon B.R. 2014. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res., 50, 1131-1151. https://doi.org/10.1002/2013WR014581Martínez, G., Gutiérrez, M.A., Messineo, P.G., Kaufmann, C.A., Rafuse, D.J. 2016. Subsistence strategies in Argentina during the late Pleistocene and early Holocene. Quaternary Science Reviews, 144, 51-65. https://doi.org/10.1016/j.quascirev.2016.05.014Miralles D.G., Holmes T.R.H., De Jeu R.A.M., Gash J.H., Meesters A.G.C.A., Dolman A.J. 2011. Global land-surface evaporation estimated from satellitebased observations. Hydrol. Earth Syst Sci., 15, 453-469. https://doi.org/10.5194/hess-15-453-2011Mu Q., Heinsch F.A., Zhao M., Running S.W. 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote. Sens. Environ., 111, 519-536. https://doi.org/10.1016/j.rse.2007.04.015Mu Q.Z., Zhao M.S., Running S.W. 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ, 115, 1781-1800. https://doi.org/10.1016/j.rse.2011.02.019Nishida K., Nemani R.R., Glassy JM, Running S.W. 2003. Development of an evapotranspiration index from aqua/MODIS for monitoring surface moisture status. IEEE Trans Geosci. Remote Sens., 41, 493- 501. https://doi.org/10.1109/TGRS.2003.811744Ocampo, D., Rivas, R. 2013. Estimación de la radiación neta diaria a partir de Modelos de Regresión Lineal Múltiple. Revista Chapingo, Serie Ciencias Forestales y del Ambiente, 19(2), 263-271. https://doi.org/10.5154/r.rchscfa.2012.04.031Penman, H.L. 1948. Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 193(1032), 120-145. https://doi.org/10.1098/rspa.1948.0037Pereyra, F. 2003. Ecorregiones de la Argentina. SEGEMAR. ISSN 0328-2325.Priestley, C.H.B., Taylor, R.J. 1972. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100(2), 81-92. https://doi.org/10.1175/1520- 0493(1972)100%3C0081:OTAOSH%3E2.3.CO;2Rivas, R.E., Carmona, F. 2013. Evapotranspiration in the Pampean Region using field measurements and satellite data. Physics and Chemistry of the Earth, Parts A/B/C, 55-57, 27-34. https://doi.org/10.1016/j.pce.2010.12.002Rivas, R., Caselles, V. 2004. A simplified equation to estimate spatial reference evaporation from remote sensing-based surface temperature and local meteorological data. Remote Sensing of Environment, 93, 68-76. https://doi.org/10.1016/j.rse.2004.06.021Sánchez, J.M., Scavone, G., Caselles, V., Valor, E., Copertino, V.A., Telesca, V. 2008. Monitoring daily evapotranspiration at a regional scale from LandsatTM and ETM+ data: Application to the Basilicata region. Journal of Hydrology, 351(1-2), 58-70. https://doi.org/10.1016/j.jhydrol.2007.11.041Scian, B., Labraga, J.C., Reimers, W., Frumento, O. 2006. Characteristics of large-scale atmospheric circulation related to extreme monthly rainfall anomalies in the Pampa region, Argentina, under non-ENSO conditions. Theoretical and Applied Climatology, 85(1-2), 89-106. https://doi.org/10.1007/s00704-005-0182-8Smith, G.L., Priestley, K.J., Loeb, N.G., Wielicki, B.A., Charlock, T.P., Minnis, P., Doelling, D.R., Rutan, D.A. 2011. Clouds and Earth Radiant Energy System (CERES), a review: Past, present and future. Advances in Space Research, 48(2), 254-263. https://doi.org/10.1016/j.asr.2011.03.009Soegaard, H., Boegh, E. 1995. Estimation of evapotranspiration from a millet crop in the Sahel combining sap flow, leaf area index and eddy correlation technique. Journal of Hydrology, 166(3-4), 265-282. https://doi.org/10.1016/0022-1694(94)05094-ETang Q.H., Peterson S., Cuenca R.H., Hagimoto Y., Lettenmaier D.P. 2009. Satellite-based nearreal-time estimation of irrigated crop water consumption. J. Geophys. Res. Atmos., 114, D05114. https://doi.org/10.1029/2008JD010854Wan Z., Zhang K., Xue X.W., Hong Z., Hong Y., Gourley J.J. 2015. Water balance based actual evapotranspi- ration reconstruction from ground and satellite obser- vations over the Conterminous United States. Water Resour. Res., 51, 6485-6499. https://doi.org/10.1002/2015WR017311Wang K.C., Wang P., Li Z.Q., Cribb M., Sparrow M. 2007. A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. J. Geophys. Res. Atmos., 112, D15107. https://doi.org/10.1029/2006JD008351Zeng Z.Z., Piao S.L., Lin X., Yin G.D., Peng S.S., Ciais P., Myneni R.B. 2012. Global evapotranspiration over the past three decades: estimation based on the water balance equation combined with empirical models. Environ. Res. Lett., 7, 014026, https://doi.org/10.1088/1748-9326/7/1/014026.Zhang K., Kimball J.S., Mu Q., Jones L.A., Goetz S.J., Running S.W. 2009. Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005. J. Hydrol., 379, 92-110. https://doi.org/10.1016/j.jhydrol.2009.09.047Zhang, K., Kimball, J.S., Running, S.W. 2016. A review of remote sensing based actual evapotranspiration estimation. WIREs Water, 3, 834-853. https://doi.org/10.1002/wat2.116

    SMOS soil moisture product validation in croplands

    Get PDF
    A validation campaign has been carried out to evaluate the Level 2 Soil Moisture (SM) product (version 5.51) given by the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite in the Pampean Region of Argentina. The study region was selected because it is a plain, avoiding topography problems, with an SMOS nominal land use class (low vegetation crops, 1-2m height). Transects of ground SM measurements were collected at 5-cm and 6-cm depth using Delta-T ThetaProbe ML2x and Stevens Hydra Probe II SM sensors, respectively. The volumetric measurements were calibrated using gravimetric and bulk density data collected at the same time as the SM sensor measurements. The SM transects covered ISEA-grid SMOS nodes over four extensive agricultural areas with prevalence of soy crops (site 1: -32.982N, -62.505E; site 2: -32.510N, -62.788E; site 3: -32.024N, -63.692E; and site 4: -37.315N, -58.868E, WGS84). The validation sites were selected taking as reference the locations of permanent SM stations property of the Argentinean Comisión Nacional de Actividades Espaciales (CONAE, National Commission of Space Activities), Instituto Nacional de Tecnología Agropecuaria (INTA, National Institute of Farming Technology) and Instituto de Hidrología de Llanuras (IHLLA, Plain Hydrology Institute). Therefore, additionally to validate the SMOS SM product with the ground data collected during the experimental campaign, the measurements are useful to evaluate the station SM data reliability at the SMOS spatial resolution with the aim of using station data series as reference to test different versions of the SMOS SM product. Previously to the campaign, SMOS SM data variability, ESA Globcover land use classification, soil edaphic properties, water bodies and topography were analyzed around the station locations to select the best sites and the experimental methodology. Temperature vegetation dryness index (TVDI) temporal and spatial variability was also studied at the sites. Additionally, transects of land surface temperature were carried out with Cimel Electronique CE312 6-band radiometers concurrently with thermal-infrared (TIR) satellite overpasses. In previous works, we studied the dependence of land surface emissivities on SM. The analysis of concurrent TIR and SM data make possible to evaluate the utility of the SMOS SM product to improve land surface emissivities and temperature determinations from satellite, giving an added value to the research

    Rapidity and k_T dependence of HBT correlations in Au+Au collisions at 200 GeV with PHOBOS

    Full text link
    Two-particle correlations of identical charged pion pairs from Au+Au collisions at sqrt(s_NN) = 200 GeV were measured by the PHOBOS experiment at RHIC. Data for the most central (0--15%) events were analyzed with Bertsch-Pratt (BP) and Yano-Koonin-Podgoretskii (YKP) parameterizations using pairs with rapidities of 0.4 < y < 1.3 and transverse momenta 0.1 < k_T < 1.4 GeV/c. The Bertsch-Pratt radii decrease as a function of pair transverse momentum. The pair rapidity Y_pipi roughly scales with the source rapidity Y_YKP, indicating strong dynamical correlations.Comment: 5 pages, 2 figures. To appear in the proceedings of Seventeenth International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004), Oakland, California from January 11-17, 2004. Submitted to Journal of Physics G: Nuclear and Particle Physic

    Review of HBT or Bose-Einstein correlations in high energy heavy ion collisions

    Full text link
    A brief review is given on the discovery and the first five decades of the Hanbury Brown - Twiss effect and its generalized applications in high energy nuclear and particle physics, that includes a meta-review. Interesting and inspiring new directions are also highlighted, including for example source imaging, lepton and photon interferometry, non-Gaussian shape analysis as well as many other new directions. Existing models are compared to two-particle correlation measurements and the so-called RHIC HBT puzzle is resolved. Evidence for a (directional) Hubble flow is presented and the conclusion is confirmed by a successful description of the pseudorapidity dependence of the elliptic flow as measured in Au+Au collisions by the PHOBOS Collaboration.Comment: 14 pages, 1 figure, 8 sub-figures, invited plenary talk at the ICPA-QGP 2005 conference in Kolkata, Indi

    Charged-Particle Pseudorapidity Distributions in Au+Au Collisions at sqrt(s_NN)=62.4 GeV

    Full text link
    The charged-particle pseudorapidity density for Au+Au collisions at sqrt(s_NN)=62.4 GeV has been measured over a wide range of impact parameters and compared to results obtained at other energies. As a function of collision energy, the pseudorapidity distribution grows systematically both in height and width. The mid-rapidity density is found to grow approximately logarithmically between AGS energies and the top RHIC energy. As a function of centrality, there is an approximate factorization of the centrality dependence of the mid-rapidity yields and the overall multiplicity scale. The new results at sqrt(s_NN)=62.4 GeV confirm the previously observed phenomenon of ``extended longitudinal scaling'' in the pseudorapidity distributions when viewed in the rest frame of one of the colliding nuclei. It is also found that the evolution of the shape of the distribution with centrality is energy independent, when viewed in this reference frame. As a function of centrality, the total charged particle multiplicity scales linearly with the number of participant pairs as it was observed at other energies.Comment: 6 pages, 7 figures, submitted to Phys. Rev. C - Rapid Communication

    System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow

    Full text link
    This paper presents measurements of the elliptic flow of charged particles as a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider (RHIC). The elliptic flow in Cu-Cu collisions is found to be significant even for the most central events. For comparison with the Au-Au results, it is found that the detailed way in which the collision geometry (eccentricity) is estimated is of critical importance when scaling out system-size effects. A new form of eccentricity, called the participant eccentricity, is introduced which yields a scaled elliptic flow in the Cu-Cu system that has the same relative magnitude and qualitative features as that in the Au-Au system

    Latest Results from PHOBOS

    Get PDF
    This manuscript contains a summary of the latest physics results from PHOBOS, as reported at Quark Matter 2006. Highlights include the first measurement from PHOBOS of dynamical elliptic flow fluctuations as well as an explanation of their possible origin, two-particle correlations, identified particle ratios, identified particle spectra and the latest results in global charged particle production.Comment: 9 pages, 7 figures, PHOBOS plenary proceedings for Quark Matter 200

    System size, energy, centrality and pseudorapidity dependence of charged-particle density in Au+Au and Cu+Cu collisions at RHIC

    Full text link
    Charged particle pseudorapidity distributions are presented from the PHOBOS experiment at RHIC, measured in Au+Au and Cu+Cu collisions at sqrt{s_NN}=19.6, 22.4, 62.4, 130 and 200 GeV, as a function of collision centrality. The presentation includes the recently analyzed Cu+Cu data at 22.4 GeV. The measurements were made by the same detector setup over a broad range in pseudorapidity, |eta|<5.4, allowing for a reliable systematic study of particle production as a function of energy, centrality and system size. Comparing Cu+Cu and Au+Au results, we find that the total number of produced charged particles and the overall shape (height and width) of the pseudorapidity distributions are determined by the number of nucleon participants, N_part. Detailed comparisons reveal that the matching of the shape of the Cu+Cu and Au+Au pseudorapidity distributions over the full range of eta is better for the same N_part/2A value than for the same N_part value, where A denotes the mass number. In other words, it is the geometry of the nuclear overlap zone, rather than just the number of nucleon participants that drives the detailed shape of the pseudorapidity distribution and its centrality dependence.Comment: 5 pages, 4 figures. Presented at the 20th International Conference on Nucleus-Nucleus Collisions (Quark Matter 2008), Jaipur, Rajasthan, India, 4-10 February 200

    Event-by-event fluctuations of azimuthal particle anisotropy in Au+Au collisions at sqrt(s_NN) = 200 GeV

    Full text link
    This paper presents the first measurement of event-by-event fluctuations of the elliptic flow parameter v_2 in Au+Au collisions at sqrt(s_NN) = 200GeV as a function of collision centrality. The relative non-statistical fluctuations of the v_2 parameter are found to be approximately 40%. The results, including contributions from event-by-event elliptic flow fluctuations and from azimuthal correlations that are unrelated to the reaction plane (non-flow correlations), establish an upper limit on the magnitude of underlying elliptic flow fluctuations. This limit is consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. These results provide important constraints on models of the initial state and hydrodynamic evolution of relativistic heavy ion collisions.Comment: 5 pages, 2 figures, Published in Phys. Rev. Lett

    The Landscape of Particle Production: Results from PHOBOS

    Full text link
    Recent results from the PHOBOS experiment at RHIC are presented, both from Au+Au collisions from the 2001 run and p+p and d+Au collisions from 2003. The centrality dependence of the total charged particle multiplicity in p+p and d+Au show features, such as Npart-scaling and limiting fragmentation, similar to p+A collisions at lower energies. Multiparticle physics in Au+Au is found to be local in (pseudo)rapidity, both when observed by HBT correlations and by forward-backward pseudorapidity correlations. The shape of elliptic flow in Au+Au, measured over the full range of pseudorapidity, appears to have a very weak centrality dependence. Identified particle ratios in d+Au reactions show little difference between the shape of proton and anti-proton spectra, while the absolute yields show an approximate m_T scaling.Comment: 8 Pages, 11 Figures, Plenary talk at Quark Matter 2004, Oakland, CA, January 11-18, 200
    corecore