Charged particle pseudorapidity distributions are presented from the PHOBOS
experiment at RHIC, measured in Au+Au and Cu+Cu collisions at sqrt{s_NN}=19.6,
22.4, 62.4, 130 and 200 GeV, as a function of collision centrality. The
presentation includes the recently analyzed Cu+Cu data at 22.4 GeV. The
measurements were made by the same detector setup over a broad range in
pseudorapidity, |eta|<5.4, allowing for a reliable systematic study of particle
production as a function of energy, centrality and system size. Comparing Cu+Cu
and Au+Au results, we find that the total number of produced charged particles
and the overall shape (height and width) of the pseudorapidity distributions
are determined by the number of nucleon participants, N_part. Detailed
comparisons reveal that the matching of the shape of the Cu+Cu and Au+Au
pseudorapidity distributions over the full range of eta is better for the same
N_part/2A value than for the same N_part value, where A denotes the mass
number. In other words, it is the geometry of the nuclear overlap zone, rather
than just the number of nucleon participants that drives the detailed shape of
the pseudorapidity distribution and its centrality dependence.Comment: 5 pages, 4 figures. Presented at the 20th International Conference on
Nucleus-Nucleus Collisions (Quark Matter 2008), Jaipur, Rajasthan, India,
4-10 February 200