2,669 research outputs found

    Femtosecond depahsing processes of molecular vibrations

    Get PDF

    BaFe_{1.8}Co_{0.2}As_2 thin film hybrid Josephson junctions

    Full text link
    Josephson junctions with iron pnictides open the way for fundamental experiments on superconductivity in these materials and their application in superconducting devices. Here, we present hybrid Josephson junctions with a BaFe_{1.8}Co_{0.2}As_2 thin film electrode, an Au barrier and a PbIn counter electrode. The junctions show RSJ-like current-voltage characteristics up to the critical temperature of the counter electrode of about 7.2K. The temperature dependence of the critical current, IC, does not show an Ambegaokar-Baratoff behavior. Well-pronounced Shapiro steps are observed at microwave frequencies of 10-18GHz. Assuming an excess current, I_ex, of 200 {\mu}A at 4.2K we get an effective I_C R_N product of 6 {\mu}V.Comment: submitted to Appl. Phys. Let

    Influence of the spreading resistance on the conductance spectrum of planar hybrid thin film SNS' junctions based on iron pnictides

    Get PDF
    To investigate the superconducting properties of iron pnictides we prepared planar hybrid SNS' junctions in thin film technology with a pnictide base electrode, a gold barrier layer and a lead counter electrode. Our design allows characterization of the electrodes and the junction independently in a 4-probe method. We show how both electrodes influence the measured spectra due to their spreading resistance. While the Pb electrode has a constant resistance above its TcT_c, the contribution of the pnictide electrode is clearly current-dependent and thus it needs a more advanced method to be corrected. We present an empirical method, which is simple to apply and allows to deal with the spreading resistance in our junctions to recalculate the actual conductance and voltage of one junction at given temperature

    The plasticity of berry shrivelling in 'Shiraz': A vineyard survey

    Get PDF
    Berry water loss during late ripening is a cultivar dependent-trait and is accentuated in wine grape varieties such as 'Shiraz'. 'Shiraz' berry development was monitored in twelve vineyards over two seasons to characterise the extent of weight loss that can occur within a grape growing region. From veraison onwards, berry fresh mass was greatest in vineyards using excessive irrigation and least in vineyards using cautious irrigation strategies. In the first season, berry fresh mass increased, reached a maximum and subsequently declined. Conversely, in the second season, characterised by rain and high humidity, berry fresh mass increased, then stabilised without a consistent decline. In both seasons, berry sugar import rates were highest shortly after veraison but then declined gradually, terminating several weeks after the weight maximum. Notwithstanding that berries with large maximum weights tended to undergo greater rates of weight loss, these berries remained heavier at harvest compared to those berries that were smaller prior to the onset of weight loss. Canopy size, yield and crop load were not key determinants of berry weight loss rates. Berry anthocyanin and sugar accumulation were closely correlated during early ripening but anthocyanin degradation took place during the late weight loss phase

    Quantitative assessment of pinning forces and the superconducting gap in NbN thin films from complementary magnetic force microscopy and transport measurements

    Full text link
    Epitaxial niobium-nitride thin films with a critical temperature of Tc=16K and a thickness of 100nm were fabricated on MgO(100) substrates by pulsed laser deposition. Low-temperature magnetic force microscopy (MFM) images of the supercurrent vortices were measured after field cooling in a magnetic field of 3mT at various temperatures. Temperature dependence of the penetration depth has been evaluated by a two-dimensional fitting of the vortex profiles in the monopole-monopole model. Its subsequent fit to a single s-wave gap function results in the superconducting gap amplitude Delta(0) = 2.9 meV = 2.1*kB*Tc, in perfect agreement with previous reports. The pinning force has been independently estimated from local depinning of individual vortices by lateral forces exerted by the MFM tip and from transport measurements. A good quantitative agreement between the two techniques shows that for low fields, B << Hc2, MFM is a powerful and reliable technique to probe the local variations of the pinning landscape. We also demonstrate that the monopole model can be successfully applied even for thin films with a thickness comparable to the penetration depth.Comment: 6 pages, 6 figures, 2 table

    On fiber dispersion models: exclusion of compressed fibers and spurious model comparisons

    Get PDF
    Fiber dispersion in collagenous soft tissues has an important influence on the mechanical response, and the modeling of the collagen fiber architecture and its mechanics has developed significantly over the last few years. The purpose of this paper is twofold, first to develop a method for excluding compressed fibers within a dispersion for the generalized structure tensor (GST) model, which several times in the literature has been claimed not to be possible, and second to draw attention to several erroneous and misleading statements in the literature concerning the relative values of the GST and the angular integration (AI) models. For the GST model we develop a rather simple method involving a deformation dependent dispersion parameter that allows the mechanical influence of compressed fibers within a dispersion to be excluded. The theory is illustrated by application to simple extension and simple shear in order to highlight the effect of exclusion. By means of two examples we also show that the GST and the AI models have equivalent predictive power, contrary to some claims in the literature. We conclude that from the theoretical point of view neither of these two models is superior to the other. However, as is well known and as we now emphasize, the GST model has proved to be very successful in modeling the data from experiments on a wide range of tissues, and it is easier to analyze and simpler to implement than the AI approach, and the related computational effort is much lower

    Doping and critical-temperature dependence of the energy gaps in Ba(Fe_{1-x}Co_x)_2As_2 thin films

    Get PDF
    The dependence of the superconducting gaps in epitaxial Ba(Fe_{1-x}Co_{x})_2As_2 thin films on the nominal doping x (0.04 \leq x \leq 0.15) was studied by means of point-contact Andreev-reflection spectroscopy. The normalized conductance curves were well fitted by using the 2D Blonder-Tinkham-Klapwijk model with two nodeless, isotropic gaps -- although the possible presence of gap anisotropies cannot be completely excluded. The amplitudes of the two gaps \Delta_{S} and \Delta_{L} show similar monotonic trends as a function of the local critical temperature T_{c}^{A} (measured in the same point contacts) from 25 K down to 8 K. The dependence of the gaps on x is well correlated to the trend of the critical temperature, i.e. to the shape of the superconducting region in the phase diagram. When analyzed within a simple three-band Eliashberg model, this trend turns out to be compatible with a mechanism of superconducting coupling mediated by spin fluctuations, whose characteristic energy scales with T_{c} according to the empirical law \Omega_{0}= 4.65*k_{B}*T_{c}, and with a total electron-boson coupling strength \lambda_{tot}= 2.22 for x \leq 0.10 (i.e. up to optimal doping) that slightly decreases to \lambda_{tot}= 1.82 in the overdoped samples (x = 0.15).Comment: 8 pages, 5 color figure

    Time-resolved spectroscopy of the primary photosynthetic processes of membrane-bound reaction centers from an antenna-deficient mutant of Rhodobacter capsulatus

    Get PDF
    The primary photosynthetic reactions in whole membranes of the antenna-deficient mutant strain U43 (pTXA6–10) of Rhodobacter capsulatus are studied by transient absorption and emission spectroscopy with subpicosecond time resolution. Extensive similarities between the transient absorption data on whole membranes and on isolated reaction centers support the idea that the primary processes in isolated reaction centers are not modified by the isolation procedure
    • …
    corecore