348 research outputs found

    HERschel Observations of Edge-on Spirals (HEROES). II: Tilted-ring modelling of the atomic gas disks

    Get PDF
    Context. Edge-on galaxies can offer important insights in galaxy evolution as they are the only systems where the distribution of the different components can be studied both radially and vertically. The HEROES project was designed to investigate the interplay between the gas, dust, stars and dark matter (DM) in a sample of 7 massive edge-on spiral galaxies. Aims. In this second HEROES paper we present an analysis of the atomic gas content of 6 out of 7 galaxies in our sample. The remaining galaxy was recently analysed according to the same strategy. The primary aim of this work is to constrain the surface density distribution, the rotation curve and the geometry of the gas disks in a homogeneous way. In addition we identify peculiar features and signs of recent interactions. Methods. We construct detailed tilted-ring models of the atomic gas disks based on new GMRT 21-cm observations of NGC 973 and UGC 4277 and re-reduced archival HI data of NGC 5907, NGC 5529, IC 2531 and NGC 4217. Potential degeneracies between different models are resolved by requiring a good agreement with the data in various representations of the data cubes. Results. From our modelling we find that all but one galaxy are warped along the major axis. In addition, we identify warps along the line of sight in three galaxies. A flaring gas layer is required to reproduce the data only for one galaxy, but (moderate) flares cannot be ruled for the other galaxies either. A coplanar ring-like structure is detected outside the main disk of NGC 4217, which we suggest could be the remnant of a recent minor merger event. We also find evidence for a radial inflow of 15 +- 5 km/s in the disk of NGC 5529, which might be related to the ongoing interaction with two nearby companions. (Abridged)Comment: 39 pages, 38 figures, Accepted for publication in Astronomy & Astrophysic

    Constraining the age of the NGC 4565 HI Disk Warp: Determining the Origin of Gas Warps

    Get PDF
    We have mapped the distribution of young and old stars in the gaseous HI warp of NGC 4565. We find a clear correlation of young stars (<600 Myr) with the warp, but no coincident old stars (>1 Gyr), which places an upper limit on the age of the structure. The formation rate of the young stars, which increased ~300 Myr ago relative to the surrounding regions, is (6.3 +2.5/-1.5) x 10^-5 M_sol/yr/kpc^2. This implies a ~60+/-20 Gyr depletion time of the HI warp, similar to the timescales calculated for the outer HI disks of nearby spiral galaxies. While some stars associated with the warp fall into the asymptotic giant branch (AGB) region of the color magnitude diagram, where stars could be as old as 1 Gyr, further investigation suggests that they may be interlopers rather than real AGB stars. We discuss the implications of these age constraints for the formation of HI warps, and the gas fueling of disk galaxies.Comment: 12 pages, 9 figures. Accepted for publication in Ap

    HERschel Observations of Edge-on Spirals (HEROES). I: Far-infrared morphology and dust mass determination

    Get PDF
    Context. Edge-on spiral galaxies with prominent dust lanes provide us with an excellent opportunity to study the distribution and properties of the dust within them. The HEROES project was set up to observe a sample of seven large edge-on galaxies across various wavelengths for this investigation. Aims. Within this first paper, we present the Herschel observations and perform a qualitative and quantitative analysis on them, and we derive some global properties of the far infrared and submillimetre emission. Methods. We determine horizontal and vertical profiles from the Herschel observations of the galaxies in the sample and describe the morphology. Modified black-body fits to the global fluxes, measured using aperture photometry, result in dust temperatures and dust masses. The latter values are compared to those that are derived from radiative transfer models taken from the literature. Results. On the whole, our Herschel flux measurements agree well with archival values. We find that the exponential horizontal dust distribution model often used in the literature generally provides a good description of the observed horizontal profiles. Three out of the seven galaxies show signatures of extended vertical emission at 100 and 160 {\mu}m at the 5{\sigma} level, but in two of these it is probably due to deviations from an exactly edge-on orientation. Only for NGC 4013, a galaxy in which vertically extended dust has already been detected in optical images, we can detect vertically extended dust, and the derived scaleheight agrees with the value estimated through radiative transfer modelling. Our analysis hints at a correlation between the dust scaleheight and its degree of clumpiness, which we infer from the difference between the dust masses as calculated from modelling of optical data and from fitting the spectral energy distribution of Herschel datapoints.Comment: 21 pages, 12 figures. Accepted for publication in Astronomy & Astrophysic

    Gaps in the cloud cover? Comparing extinction measures in spiral disks

    Get PDF
    Dust in galaxies can be mapped by either the FIR/sub-mm emission, the optical or infrared reddening of starlight, or the extinction of a known background source. We compare two dust extinction measurements for a set of fifteen sections in thirteen nearby galaxies, to determine the scale of the dusty ISM responsible for disk opacity: one using stellar reddening and the other a known background source. In our earlier papers, we presented extinction measurements of 29 galaxies, based on calibrated counts of distant background objects identified though foreground disks in HST/WFPC2 images. For the 13 galaxies that overlap with the Spitzer Infrared Nearby Galaxies Survey (SINGS), we now compare these results with those obtained from an I-L color map. Our goal is to determine whether or not a detected distant galaxy indicates a gap in the dusty ISM, and hence to better understand the nature and geometry of the disk extinction. We find that distant galaxies are predominantly in low-extinction sections marked by the color maps, indicating that their number depends both on the cloud cover of {\it Spitzer}-resolved dust structures --mostly the spiral arms--and a diffuse, unresolved underlying disk. We note that our infrared color map (E[I-L]) underestimates the overall dust presence in these disks severely, because it implicitly assumes the presence of a dust screen in front of the stellar distribution.Comment: 22 pages, 2 figures, 3 tables, accepted for publication in A

    Mergers trigger active galactic nuclei out to z ∼0.6

    Get PDF
    Aims. The fueling and feedback of active galactic nuclei (AGNs) are important for understanding the co-evolution between black holes and host galaxies. Mergers are thought to have the capability to bring gas inward and ignite nuclear activity, especially for more powerful AGNs. However, there is still significant ongoing debate on whether mergers can trigger AGNs and, if they do, whether mergers are a significant triggering mechanism. Methods. We selected a low-redshift (0.005  \u3c   z  \u3c   0.1) sample from the Sloan Digital Sky Survey and a high-redshift (0  \u3c   z  \u3c   0.6) sample from the Galaxy And Mass Assembly survey. We took advantage of the convolutional neural network technique to identify mergers. We used mid-infrared (MIR) color cut and optical emission line diagnostics to classify AGNs. We also included low excitation radio galaxies (LERGs) to investigate the connection between mergers and low accretion rate AGNs. Results. We find that AGNs are more likely to be found in mergers than non-mergers, with an AGN excess up to 1.81 ± 0.16, suggesting that mergers can trigger AGNs. We also find that the fraction of mergers in AGNs is higher than that in non-AGN controls, for both MIR and optically selected AGNs, as well as LERGs, with values between 16.40 ± 0.5% and 39.23 ± 2.10%, implying a non-negligible to potentially significant role of mergers in triggering AGNs. This merger fraction in AGNs increases as stellar mass increases, which supports the idea that mergers are more important for triggering AGNs in more massive galaxies. In terms of merger fraction as a function of AGN power we find a positive trend for MIR selected AGNs and a complex trend for optically selected AGNs, which we interpret under an evolutionary scenario proposed by previous studies. In addition, obscured MIR selected AGNs are more likely to be hosted in mergers than unobscured MIR selected AGNs

    Effect of galaxy mergers on star-formation rates

    Get PDF
    Context. Galaxy mergers and interactions are an integral part of our basic understanding of how galaxies grow and evolve over time. However, the effect that galaxy mergers have on star-formation rates (SFRs) is contested, with observations of galaxy mergers showing reduced, enhanced, and highly enhanced star formation. Aims. We aim to determine the effect of galaxy mergers on the SFR of galaxies using statistically large samples of galaxies, totalling over 200 000, which is over a large redshift range from 0.0 to 4.0. Methods. We trained and used convolutional neural networks to create binary merger identifications (merger or non-merger) in the SDSS, KiDS, and CANDELS imaging surveys. We then compared the SFR, with the galaxy main sequence subtracted, of the merging and non-merging galaxies to determine what effect, if any, a galaxy merger has on SFR. Results. We find that the SFR of merging galaxies are not significantly different from the SFR of non-merging systems. The changes in the average SFR seen in the star-forming population when a galaxy is merging are small, of the order of a factor of 1.2. However, the higher the SFR is above the galaxy main sequence, the higher the fraction is for galaxy mergers. Conclusions. Galaxy mergers have little effect on the SFR of the majority of merging galaxies compared to the non-merging galaxies. The typical change in SFR is less than 0.1 dex in either direction. Larger changes in SFR can be seen but are less common. The increase in merger fraction as the distance above the galaxy main sequence increases demonstrates that galaxy mergers can induce starbursts

    Late Cretaceous sauropod tooth morphotypes may provide supporting evidence for faunal connections between North Africa and Southern Europe

    Get PDF
    The Cretaceous Kem Kem beds of Morocco and equivalent beds in Algeria have produced a rich fossil assemblage, yielding, amongst others, isolated sauropod teeth, which can be used in species diversity studies. These Albian-Cenomanian ( approximately 113-93.9 Ma) strata rarely yield sauropod body fossils, therefore, isolated teeth can help to elucidate the faunal assemblages from North Africa, and their relations with those of contemporaneous beds and geographically close assemblages. Eighteen isolated sauropod teeth from three localities (Erfoud and Taouz, Morocco, and Algeria) are studied here, to assess whether the teeth can be ascribed to a specific clade, and whether different tooth morphotypes can be found in the samples. Two general morphotypes are found, based on enamel wrinkling and general tooth morphology. Morphotype I, with mainly rugose enamel wrinkling, pronounced carinae, lemon-shaped to (sub)cylindrical cross-section and mesiodistal tapering towards an apical tip, shows affinities to titanosauriforms and titanosaurs. Morphotype II, characterized by more smooth enamel, cylindrical cross-section, rectangular teeth with no apical tapering and both labial and lingual wear facets, shows similarities to rebbachisaurids. Moreover, similarities are found between these northwest African tooth morphotypes, and tooth morphotypes from titanosaurs and rebbachisaurids from both contemporaneous finds from north and central Africa, as well as from the latest Cretaceous (Campanian-Maastrichtian, 83.6 Ma-66.0 Ma) of the Ibero-Armorican Island. These results support previous hypotheses from earlier studies on faunal exchange and continental connections between North Africa and Southern Europe in the Cretaceous

    Stellar populations across the NGC4244 truncated galactic disk

    Get PDF
    We use HST/ACS to study the resolved stellar populations of the nearby, nearly edge-on galaxy NGC4244 across its outer disk surface density break. The stellar photometry allows us to study the distribution of different stellar populations and reach very low equivalent surface brightnesses. We find that the break occurs at the same radius for young, intermediate age, and old stars. The stellar density beyond the break drops sharply by a factor of at least 600 in 5 kpc. The break occurs at the same radius independent of height above the disk, but is sharpest in the midplane and nearly disappears at large heights. These results make it unlikely that truncations are caused by a star formation threshold alone: the threshold would have to keep the same radial position from less than 100 Myr to 10 Gyr ago, in spite of potential disturbances such as infall and redistribution of gas by internal processes. A dynamical interpretation of truncation formation is more likely such as due to angular momentum redistribution by bars or density waves, or heating and stripping of stars caused by the bombardment of dark matter sub-halos. The latter explanation is also in quantitative agreement with the small diffuse component we see around the galaxy.Comment: ApJ Letters, in press. Five pages, 2 figure

    Connecting MeerKAT radio continuum properties to GAMA optical emission-line and WISE mid-infrared activity

    Full text link
    The identification of AGN in large surveys has been hampered by seemingly discordant classifications arising from differing diagnostic methods, usually tracing distinct processes specific to a particular wavelength regime. However, as shown in Yao et al. (2020), the combination of optical emission line measurements and mid-infrared photometry can be used to optimise the discrimination capability between AGN and star formation activity. In this paper we test our new classification scheme by combining the existing GAMA-WISE data with high-quality MeerKAT radio continuum data covering 8 deg2^2 of the GAMA G23 region. Using this sample of 1 841 galaxies (z < 0.25), we investigate the total infrared (derived from 12μ\mum) to radio luminosity ratio, q(TIR), and its relationship to optical-infrared AGN and star-forming (SF) classifications. We find that while q(TIR) is efficient at detecting AGN activity in massive galaxies generally appearing quiescent in the infrared, it becomes less reliable for cases where the emission from star formation in the host galaxy is dominant. However, we find that the q(TIR) can identify up to 70 % more AGNs not discernible at optical and/or infrared wavelengths. The median q(TIR) of our SF sample is 2.57 ±\pm 0.23 consistent with previous local universe estimates
    • …
    corecore