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ABSTRACT

Context. Galaxy mergers and interactions are an integral part of our basic understanding of how galaxies grow and evolve over time.
However, the effect that galaxy mergers have on star-formation rates (SFRs) is contested, with observations of galaxy mergers showing
reduced, enhanced, and highly enhanced star formation.
Aims. We aim to determine the effect of galaxy mergers on the SFR of galaxies using statistically large samples of galaxies, totalling
over 200 000, which is over a large redshift range from 0.0 to 4.0.
Methods. We trained and used convolutional neural networks to create binary merger identifications (merger or non-merger) in the
SDSS, KiDS, and CANDELS imaging surveys. We then compared the SFR, with the galaxy main sequence subtracted, of the merging
and non-merging galaxies to determine what effect, if any, a galaxy merger has on SFR.
Results. We find that the SFR of merging galaxies are not significantly different from the SFR of non-merging systems. The changes
in the average SFR seen in the star-forming population when a galaxy is merging are small, of the order of a factor of 1.2. However,
the higher the SFR is above the galaxy main sequence, the higher the fraction is for galaxy mergers.
Conclusions. Galaxy mergers have little effect on the SFR of the majority of merging galaxies compared to the non-merging galaxies.
The typical change in SFR is less than 0.1 dex in either direction. Larger changes in SFR can be seen but are less common. The
increase in merger fraction as the distance above the galaxy main sequence increases demonstrates that galaxy mergers can induce
starbursts.

Key words. galaxies: interactions – galaxies: evolution – galaxies: star formation – galaxies: starburst – methods: numerical

1. Introduction

Galaxy mergers and interactions form a key part of our under-
standing of how galaxies form and evolve over time. In cold
dark matter cosmology, dark matter halos merge under hierar-
chical growth that results in the merger of the halos’ baryonic
counterparts (e.g. Conselice 2014; Somerville & Davé 2015).
This interaction results in the disruption of the galaxies that lie
at the centre of the dark matter halos. Tidal forces act to pull
and distort the galaxies, subsequently moving stars within the
galaxies from the disk to the spheroid component (e.g. Toomre &
Toomre 1972; Somerville & Davé 2015, and references therein).
Mergers can potentially increase the activity of an active galac-
tic nucleus (e.g. Sanders & Mirabel 1996; Ellison et al. 2019),
although more recent work suggests this may not always be the
case (e.g. Darg et al. 2010a; Weigel et al. 2018).

Mergers are also thought to trigger periods of extreme star
formation: starbursts. From simulations, these starbursts are
believed to be a result of the tidal interactions of the galaxies that
compress and shock the gas, which results in the rapid formation

of stars (e.g. Barnes 2004; Kim et al. 2009; Saitoh et al. 2009).
Such shock-induced star formation in mergers has also been
observed (Schweizer 2009). These intense star-forming events
are believed to be the cause of some of the brightest infrared
objects, ultra luminous infrared galaxies (Sanders & Mirabel
1996; Niemi et al. 2012). This connection between starbursts
and merging galaxies resulted in the prevailing theory that most
merging galaxies go through a starburst phase (e.g. Joseph &
Wright 1985; Schweizer 2005).

More recent observations have shown that merger induced
starbursts are found in the minority of merging systems. These
studies find that the typical increase in star-formation rate (SFR)
of a merger is at most a factor of two, much lower than what
would typically be considered a starburst (Ellison et al. 2013;
Knapen et al. 2015; Silva et al. 2018). Work by Knapen et al.
(2015) shows that the majority of galaxy mergers are found to
cause a reduction in the SFR when compared to non-merging
galaxies of comparable stellar masses. In total, approximately
10−20% of star-forming galaxies are found to be undergoing a
merger (Luo et al. 2014; Cibinel et al. 2019) while this fraction
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increases with redshift (Berrier et al. 2006; Conselice et al. 2009;
López-Sanjuan et al. 2010, 2015; Lotz et al. 2011; Rodríguez-
Puebla et al. 2017). Although acquiring observational evidence
for the change of SFR as a function of time before and after
a merger is difficult due to the long timescales involved, there
is observational evidence for starbursts on the first and sec-
ond close passes of two galaxies as well as coalescence. These
bursts appear to last between 107 and 108 years (Cortijo-Ferrero
et al. 2017). This is supported by observations that show close
pairs have higher SFRs than more separated galaxies in mergers
(Davies et al. 2015).

Gas rich (wet) mergers are able to support higher SFRs as
there is an abundance of fuel available to create new stars (e.g.
Lin et al. 2008; Perez et al. 2011; Athanassoula et al. 2016). Gas
poor (dry) mergers, however, do not have gas readily available
and so it is harder to form starbursts in these systems (e.g. Bell
et al. 2006; Naab et al. 2006; Lin et al. 2008). As a result of dense
environments containing a higher number of gas poor galaxies
than gas rich galaxies, dry galaxy mergers dominate over wet
mergers in dense environments (Lin et al. 2010). The fraction
of dry mergers also increases with the age of the Universe (Lin
et al. 2008). Due to gas poor galaxies dominating at high masses
(stellar mass &1010.7 M�), mergers of two high mass galaxies
tend to be dry and, as a result, can act to suppress star forma-
tion (Robotham et al. 2014).

A study by Davies et al. (2015) find that the merger ratio of
the merging galaxies also influences the SFR. In major merg-
ers (mass ratio <3:1), the lower mass galaxy experiences a
short period of enhanced star formation, while in minor merg-
ers (mass ratio >3:1) the star formation in the lower mass galaxy
is suppressed. The more massive of the two merging galaxies,
however, always experiences an increase in SFR regardless of
whether the merger is major or minor.

Simulations of mergers have been conducted, allowing us to
study the SFRs of the merging galaxies throughout the entire
merger sequence from first passage to coalescence (e.g. Springel
et al. 2005; Hopkins et al. 2006; Randall et al. 2008; Rupke
et al. 2010). These simulations have shown that SFR is enhanced
when the merging galaxies are close to one another at first pass,
second pass, and coalescence (Moreno et al. 2019). The period
between first and second passes also maintains a higher SFR than
in an isolated galaxy, by approximately a factor of two. This
period is the majority of the merger sequence, taking approxi-
mately 2.5 Gyr of the entire 3.5 Gyr merger timescale (Moreno
et al. 2019). This can explain why so few galaxies are observed
in the starburst phase of a merger as the period between star-
bursts is much longer than the starburst period of approximately
0.5 Gyr. The starburst caused by the close passage and coales-
cence is also found to be stronger for head on collisions and
reduces in strength as the approach of the galaxies becomes more
oblique. However, the strength of a starburst is also connected to
the resolution of the simulation, with lower resolution simula-
tions finding weaker starbursts (Sparre & Springel 2016).

A major observational challenge of merger studies is the dif-
ficulty in detecting a large sample of merging galaxies. Visually
identifying galaxies is time consuming and hard to reproduce;
different people can classify the same galaxy differently and
the same classifier may assign different labels on different days.
Some of this difficulty can be reduced by employing citizen sci-
ence, such as Galaxy Zoo1 (GZ; Lintott et al. 2008), to get many
members of the public to classify images of galaxies. However,
such approaches are not scalable to the volume of data we expect

1 http://www.galaxyzoo.org/

from upcoming large surveys. Using non-parametric statis-
tics, such as concentration, asymmetry, smoothness (CAS; e.g.
Bershady et al. 2000; Conselice et al. 2000, 2003; Wu et al.
2001) or the Gini coefficient, a description of the relative dis-
tribution of flux within pixels, and the second-order moment of
the brightest 20% of the light (M20; Lotz et al. 2004) avoids the
issues with reproducibility, especially combined with detailed
galaxy merger modelling to provide a classification baseline
(Lotz et al. 2010a,b). However, merger detection with these
non-parametric statistics is sensitive to image quality and res-
olution, and suffers from a high fraction of misidentifications
(Huertas-Company et al. 2015). The close pair method is also
often employed, finding pairs of galaxies that are close on the
sky and in redshift (e.g. Barton et al. 2000; Lambas et al. 2003;
De Propris et al. 2005; Ellison et al. 2008; Rodrigues et al. 2018;
Duncan et al. 2019). However, this method requires highly com-
plete spectroscopic observations and can be contaminated with
flybys (Sinha & Holley-Bockelmann 2012; Lang et al. 2014).

Deep learning has the potential to overcome some of these
difficulties. Once trained, neural networks are able to perform
visual like classifications of galaxies, and other astronomical
objects, in a fraction of the time it takes a human, or team
of humans, to classify the same objects. The classifications
are also reproducible: if the same object is passed through the
same neural network the result will always be the same. Deep
learning techniques are becoming more commonplace in the
astronomical community with uses including star-galaxy classi-
fication (e.g. Kim & Brunner 2017), galaxy morphology classifi-
cation (e.g. Dieleman et al. 2015; Huertas-Company et al. 2015;
Domínguez Sánchez et al. 2019), gravitational lens identification
(e.g. Petrillo et al. 2017; Davies et al. 2019), and galaxy merger
identification (e.g. Ackermann et al. 2018; Pearson et al. 2019).

In this work we aim to use deep learning techniques to iden-
tify merging galaxies within three data sets: the Sloan Digital
Sky Survey (SDSS; York et al. 2000), the Kilo Degree Sur-
vey (KiDS; de Jong et al. 2013a,b), and the Cosmic Assembly
Near-infrared Deep Extragalactic Legacy Survey (CANDELS;
Grogin et al. 2011; Koekemoer et al. 2011). These three data
sets are employed so a large range of redshifts can be cov-
ered, with SDSS and KiDS at low redshift and CANDELS at
high redshift. With these identifications, we compare the SFRs
of the star-forming merging galaxies with the star-forming non-
merging galaxies and determine if galaxy mergers have an effect
on the SFR of the merging galaxies.

The paper is structured as follows. Section 2 discusses the data
used and the merger selection for training our neural network.
Section 3 describes the tools used in this study, including how
we determined the galaxy main sequence through modelling
and a brief description of the type of deep learning we employ:
convolutional neural networks. This is followed by our results
and discussion in Sects. 4 and 5 before we conclude in Sect. 6.
Where necessary, Wilkinson Microwave Anisotropy Probe
year 7 (WMAP7) cosmology (Komatsu et al. 2011; Larson
et al. 2011) is adopted, with ΩM = 0.272, ΩΛ = 0.728, and
H0 = 70.4 km s−1 Mpc−1.

2. Data

To train the neural network, a large number of images of pre-
classified merging and non-merging systems are required. We
also collect images of unclassified images from the same sur-
veys to classify with our networks to increase the sample size
for this study. To determine if galaxy mergers affect SFRs in the
galaxies, we also require stellar masses (M?), SFR, and redshifts
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for the pre-classified and unclassified galaxies. We gather these
for SDSS, KiDS, and CANDELS.

These three data sets cover different redshift ranges for which
merger detection is attempted: the SDSS data that we use cov-
ers the low redshift regime (0.005 < z ≤ 0.1), along with the
KiDS data (0.00 < z ≤ 0.15), while the CANDELS data that
we use goes to high redshift (0.0 < z ≤ 4.0). The overlaps in
the redshifts also allow us to examine differences due to res-
olution, depth, and other effects, by comparing the SDSS and
KiDS results, as well as different wavelengths, by comparing the
optical SDSS and KiDS with the near-infrared CANDELS. The
CANDELS data also probes rest frame optical data at z ≈ 1.2
with the three CANDELS bands used (1.6 µm, 1.25 µm and
814 nm) probing approximately the rest frame i, r, and g bands
used in the SDSS data.

2.1. SDSS data release 7

For the SDSS data, we use the network trained on SDSS images
from Pearson et al. (2019). The merging and non-merging
galaxies used to train this network were collected following
Ackermann et al. (2018). The 3003 merging galaxies are from
Darg et al. (2010a,b), itself derived from classifications from
the Galaxy Zoo (GZ) visual classification. These galaxies have
GZ merger classification greater than 0.4 and were then visually
checked again to ensure these galaxies are likely to be merg-
ing pairs. Approximately half (54%) of these merging galax-
ies are major mergers (Darg et al. 2010b), that is the ratio of
the stellar masses of the two galaxies is less than three. For
the non-merging galaxies, 3003 galaxies were randomly selected
from galaxies that have their GZ merger classification less than
0.2. Cut-outs of the merging and non-merging objects were
then requested from the SDSS cut-out server for data release 72

(DR7) to create 6006 images in the gri bands, each of 256× 256
pixels and with Lupton et al. (2004) colour scaling. These images
were then cropped to the central 64× 64 pixels, corresponding
to 25.3× 25.3 arcsec or 46.5× 46.5 kpc at z = 0.1, to reduce
memory requirements while training. The merger fraction of the
complete training sample, before randomly selecting the non-
merging galaxies but after mass completeness cuts, is ∼1.0%.

To increase the sample for analysis, all SDSS galaxies with
spectroscopic redshifts between 0.005 and 0.1 were selected, to
match the redshift range of the training sample, and were then
classified into merging and non-merging by the Pearson et al.
(2019) network, a total of 206 037 galaxies once selected for
mass completeness. Again, 256× 256 pixel cutouts in the gri
bands were collected for these galaxies from the SDSS DR7
cutout server and the central 64× 64 pixels used for classifica-
tion. The M? and SFR for these objects were then collected from
the MPA-JHU catalogue3, which uses the Kroupa (2001) initial
mass function (IMF; Kauffmann et al. 2003; Salim et al. 2007;
Brinchmann et al. 2004). The M? is therefore derived from spec-
tral energy distribution (SED) fitting while the SFR is derived
from Hα observations.

For determining the galaxy main sequence (MS), the star-
forming galaxies were selected by performing a cut in the
g − r – absolute r magnitude (Mr) plane, closely following
Loveday et al. (2012), where we define star-forming galaxies as:

g − r < 0.08 − 0.03Mr. (1)

2 http://cas.sdss.org/dr7/en/tools/chart/default.asp
3 https://wwwmpa.mpa-garching.mpg.de/SDSS/DR7/

Fig. 1. Rest frame g − r colour vs. absolute r magnitude (Mr) for SDSS
DR7. The colour cut is shown as a red line where galaxies below the
line are considered to be star-forming.

The rest frame g− r colour was determined by our own fitting of
the five SDSS bands with CIGALE (Noll et al. 2009; Boquien
et al. 2019). A UV J colour cut, which is used for the KiDS and
CANDELS data, is not used as the wavelength coverage is not
sufficient to reliably constrain the J band magnitude. A plot of
this colour cut can be seen in Fig. 1. The mass limit was deter-
mined to be log(M?/M�) = 10.1, see Sect. 2.4 for details.

2.2. KiDS

For our KiDS sample, we use the latest data release 4 (DR4;
Kuijken et al. 2019). We match these catalogues with the Galaxy
and Mass assembly (GAMA; Driver et al. 2009) GZ catalogue
(Holwerda et al. 2019; Kelvin et al., in prep.) to determine the
merging and non-merging galaxies and combine this classifi-
cation with non-parametric statistics (see Sect. 2.2.2). For the
KiDS data, we only use r-band images to train the network,
using 64× 64 pixel cutouts, corresponding to 13.7× 13.7 arcsec
or 25.2× 25.2 kpc at z = 0.1, and with linear colour scal-
ing. Tests comparing multi-channel, as used with SDSS and
CANDELS, and single channel images, as used with KiDS, to
identify galaxy mergers have shown that using a single channel
does not notably affect the results. When applying the trained
CNN to unclassified objects, we use objects that lie within the
GAMA09 field. This region is large enough to provide a sta-
tistically significant sample size of galaxies and has the added
benefit that it has Herschel Spectral and Photometric Imaging
Receiver (SPIRE; Griffin et al. 2010) coverage to aid with deter-
mining SFRs.

The majority of the KiDS objects in DR4 do not have
estimates of physical parameters, beyond photometric redshifts
(Kuijken et al. 2019). Thus, to derive M? and SFR, we use the
9-band catalogues combined with Herschel ATLAS (Eales et al.
2010; Smith et al. 2017) SPIRE data de-blended with XID+
(Hurley et al. 2017; Pearson et al. 2017, see also Appendix A).
From the 9-band catalogue we use the KiDS Gaussian aper-
ture and point spread function (GAAP; Kuijken et al. 2015) flux
densities for the ugri optical bands and the VISTA Kilo-Degree
Infrared Galaxy Survey (VIKING; Edge et al. 2013) GAAP flux
densities for the ZY JHKs bands, all left uncorrected for fore-
ground extinction. SEDs are fitted to these data using CIGALE
and stellar populations with a Chabrier (2003) IMF. As can
be seen in Fig. 2, the M? from CIGALE are in good agree-
ment, within 0.2 dex on average, with those from the GAMA
survey (Wright et al. 2017) estimated using the MAGPHYS
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Fig. 2. Comparison of M? from this work (y-axis) with M? from GAMA
(x-axis). The red line denotes the 1-to-1 relation. The two data sets are
in reasonable agreement with the average stellar masses within 0.2 dex
and remain the same with and without the inclusion of SPIRE data. The
typical statistical error on M? is 0.1 dex.

Fig. 3. Comparison of SFR from this work (y-axis) with SFR from
GAMA (x-axis). The red line denotes the 1-to-1 relation. The two data
sets are within 0.2 dex on average and are consistent within the typical
error of 0.26 dex. Both the GAMA SFRs and the SFRs from this work
are derived from SED fitting.

(da Cunha et al. 2008) SED fitting tool, which also uses the
Chabrier (2003) IMF. A similar comparison is made with the
SFR in Fig. 3, showing good agreement with GAMA.

To select the star-forming galaxies for determining the MS,
a UV J colour cut was employed using the rest frame U − V
and V − J colours, determined by CIGALE during the fitting to
estimate M? and SFR, and the photometric redshifts. For this,
we follow Whitaker et al. (2011):

(U − V) > 0.88 × (V − J) + 0.69 z < 0.5
(U − V) > 0.88 × (V − J) + 0.59 z > 0.5
(U − V) > 1.3, (V − J) < 1.6 z < 1.5 (2)
(U − V) > 1.3, (V − J) < 1.5 1.5 < z < 2.0
(U − V) > 1.2, (V − J) < 1.4 2.0 < z < 4.0

where any galaxies that do not meet these criteria are determined
to be star-forming. An example of the colour cut is shown in
Fig. 4. The mass completeness limit for the KiDS galaxies was
determined to be log(M?/M�) = 9.6, see Sect. 2.4 for details.
This was determined using the magnitude limit from the GAMA
survey of 19.8, for the r-band, as this is the limit imposed on the
training sample.

Fig. 4. Rest frame U − V colour vs. rest frame V − J colour for KiDS.
The colour cut is shown as a red line where galaxies below and to the
right of the line are considered to be star-forming.

2.2.1. KiDS-GAMA Galaxy Zoo

There are no pre-existing merger catalogues for the KiDS survey,
although there are visual GZ classifications for 36 706 galax-
ies in the regions that overlap with the GAMA survey (KiDS-
GAMA): the three GAMA equatorial fields. We can use this
classification to help select a sample of merging galaxies to
use with the KiDS data. As with other Galaxy Zoo (Lintott
et al. 2008) projects, citizen scientists were asked to classify
images of galaxies following a classification tree, as described in
Holwerda et al. (2019), through the GZ web interface4 and
we use the vote fractions that are weighted for user perfor-
mance. These weighted vote fractions have votes from users that
frequently disagree with the majority of other users weighted
lower, reducing their influence on the overall vote fraction. These
galaxies were selected to have redshifts between 0.002 and 0.15
and GAMA data quality flags are used to ensure only science
targets are shown. Of interest here is the question concerning
galaxy interactions. This question asks the classifier to identify
merging galaxies, galaxies with tidal tails, galaxies that are both
merging and have tidal tails or galaxies that show neither of
these features. The latter of these classifications, galaxies that
have neither tidal tails nor show evidence of a merger, is what is
used here to help identify galaxy mergers and will hence forth
be referred to as merger_neither_frac. Galaxies that have
merger_neither_frac less than 0.5, that is less than half the
people who classified the galaxy thought it showed no tidal fea-
tures or merger indications, is used here to for the basis of the
merging galaxy sample with further refinements added.

2.2.2. KiDS merger selection

The visual GZ merger classifications require validation with
other methods, as chance projections or star-galaxy overlaps can
be misidentified as merging galaxies (Darg et al. 2010a,b). To
do this, we use the Gini, the second-order moment of the bright-
est 20% of the light (M20), concentration (C), asymmetry (A)
and smoothness (S) non-parametric parameters (Lotz et al. 2004;
Bershady et al. 2000; Conselice et al. 2000, 2003; Wu et al.
2001). For each of the galaxies in the KiDS-GAMA sample, we
derive these five non-parametric statistics using the python code
statmorph (Rodriguez-Gomez et al. 2019).

4 http://www.galaxyzoo.org/
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Fig. 5. Gini vs. M20 for KiDS-GAMA GZ galaxies binned by Gini
and M20. The average merger_neither_frac from GZ within each
bin is shown from low (red) to high (blue). The green line is the
Lotz et al. (2004) split between merging and non-merging galaxies
while the yellow line is the Lotz et al. (2008) split. Regions with
low merger_neither_frac are visually identified as merging galax-
ies. Panel b includes the visually confirmed mergers from Darg et al.
(2010a,b) as purple stars.

There has been found to be a division between merging and
non-merging galaxies using the Gini and M20 statistics: Lotz
et al. (2004) found that galaxies can be considered to be non-
mergers if

Gini < −0.115M20 + 0.384 (3)

while Lotz et al. (2008) found a similar result with non-mergers
defined as

Gini < −0.15M20 + 0.33. (4)

We also populate the Gini-M20 parameter space, bin by
Gini and M20, and show the average merger_neither_frac
of the galaxies inside each bin, as seen in Fig. 5. The
merger_neither_frac is the fraction of GZ votes that say
the galaxy has no indication of a galaxy merger or tidal tails.
In doing this, we find that galaxies found to be mergers in the
KiDS-GAMA GZ typically lie on or above these two lines. How-
ever, as can be seen in Fig. 5, there are also a large number of
galaxies that lie above these lines that are classified by GZ as
non-mergers: the merging galaxies appear to form a valley. Over-
laying the visually confirmed merging galaxies from Darg et al.
(2010a,b) that fall within the KiDS coverage, we also find that
the majority of these galaxies lie below the Lotz et al. (2004,
2008) lines, as can be seen in Fig. 5b, suggesting that this is a
poor choice to determine merger status for this KiDS data set.

This disparity may be a result of the different data used. The
Gini and M20 statistics are calculated from the images and so
depend on the resolution and signal-to-noise of the images (Lotz

Fig. 6. Asymmetry (A) vs. Smoothness (S) for KiDS-GAMA GZ galax-
ies binned by A and S. The average merger_neither_frac from GZ
within each bin is shown from low (red) to high (blue). Regions with
low merger_neither_frac are visually identified as merging galax-
ies. The orange line denotes the Conselice (2003) split between merg-
ing and non-merging galaxies. Panel b includes the visually confirmed
mergers from Darg et al. (2010a,b) as purple stars.

et al. 2004). The flux distribution of a lower resolution image
will be different, the same flux will be spread across fewer pixels
in a lower resolution images as well as removing smaller scale
structures, which will increase the uncertainties in these statis-
tics. Similarly, higher signal-to-noise images will reveal fainter
features of a galaxy that will also affect the Gini and M20. The
Gini and M20 have been found to be reasonably consistent when
the signal-to-noise is above two but M20 is particularly sensi-
tive to resolution (Lotz et al. 2004). The data used in Lotz et al.
(2004) is lower resolution than KiDS while Lotz et al. (2008)
uses Hubble Space Telescope data with higher resolution.

If instead we use the asymmetry (A) and smoothness (S)
statistics, which have been found to be not overly sensitive to
resolution as M20 (Lotz et al. 2004), we find a merging sample
that agrees much better with the visual classification. It has been
found, by Conselice (2003), that the merging galaxies lie above

A = 0.35S + 0.02. (5)

As can be seen in Fig. 6, this classification is in good agree-
ment with the visual classifications from GZ. Overlaying the
Darg et al. (2010a,b) mergers, we find that the majority lie above
Eq. (5). Based on this agreement, we select our merging sam-
ple to be those galaxies that have merger_neither_frac from
GZ less than 0.5 and lie above Eq. (5), with non-merging galax-
ies defined as those with merger_neither_frac greater than
0.5 and lie below Eq. (5). This results in 1917 merging galax-
ies that we use to train the KiDS network. By matching these
galaxies to the nearest galaxy within 3 arcsec in the full GAMA
catalogue (Wright et al. 2017) and selecting the pairs that have
redshifts within 0.05, we find that approximately half of these
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galaxies (6 of 14) are major mergers. The total number of
matched pairs is very low, and misses pairs where the secondary
galaxy is below the magnitude limit of the survey, but this frac-
tion is in line with that seen by Darg et al. (2010b) in the SDSS
data. We randomly select a further 1917 galaxies from the 20 842
that lie below Eq. (5) and have merger_neither_frac greater
than 0.5 to form the non-merging sample. With these classifica-
tions for merging and non-merging galaxies, and after mass com-
pleteness cuts, the merger fraction of the GZ galaxies is 8.4%.

2.3. CANDELS

To train the CANDELS network, we use the visual classi-
fications for the Great Observatories Origins Deep Survey –
South (GOODS-S; Giavalisco et al. 2004) from Kartaltepe et al.
(2015). This catalogue contains galaxies with H magnitude less
than 24.5 that have been classified by a small number of pro-
fessional astronomers and we select objects with photometric
redshift below 4.0. Of interest to this work are the classifica-
tions that identify mergers (merger), interaction within a seg-
mentation map (Int1), interaction with a galaxy outside of the
segmentation map (Int2), a non interacting companion (Comp)
or no interaction (NoInt). During the classification, only one of
these identifications may be chosen. The catalogue also contains
an Any_Int category, which combines the merger, Int1, and
Int2 identifications.

We define galaxies as merging if the Any_Int classification
is greater than 0.6 (that is more that 60% of people believe that
the galaxy is interacting) and we define galaxies as non-merging
if the Any_Int classification is less than 0.5. As with the KiDS
galaxies, we match the merging galaxies to the rest of the CAN-
DELS catalogue within 3 arcsec and selecting the pairs that have
redshifts within 0.05, we find that approximately half of these
galaxies (4 of 9) are major mergers. Again, the total number of
matched pairs is very low, and this method misses pairs where
the secondary galaxy is below the magnitude limit of the sur-
vey, but this fraction is in line with that seen in the SDSS data.
Cutouts for these objects were created from the 1.6 µm, 1.25 µm,
and 814 nm images. As the 814 nm images are twice the angu-
lar resolution of the other two bands, these images are reduced
in size by averaging the flux density in 2× 2 pixel groups. The
1.6 µm, 1.25 µm, and 814 nm bands are then used as the red,
green, and blue channels in the images, with simple linear colour
scaling. As with the SDSS and KiDS images, the CANDELS
images are 64× 64 pixels, corresponding to 3.8× 3.8 arcsec or
32.7× 32.7 kpc at z = 1.5. Objects with clear artefacts within
the image were removed. This resulted in 694 merging galax-
ies and we randomly select a further 694 from the 4428 non-
merging galaxies that meet our criteria. The merger fraction for
the training sample using these criteria, and after mass complete-
ness cuts, is 15.5%.

To increase the CANDELS sample for our analysis, we
classified all CANDELS galaxies with H-magnitude <24.5
and redshift between 0.0 and 4.0, to match the training sample,
from the Cosmic Evolution Survey (COSMOS; Scoville et al.
2007), Extended Groth Strip (EGS; Davis et al. 2007), UKIRT
Infrared Deep Sky Survey (UKIDSS) Ultra-Deep Survey (UDS;
Lawrence et al. 2007; Cirasuolo et al. 2007) fields with the
CANDELS network (once trained). Images for these galaxies
were created as above. The H-magnitude and SED derived SFR
and M?, assuming a Chabrier (2003) IMF, come from Guo
et al. (2013), Santini et al. (2015) for GOODS-S, Nayyeri et al.
(2017) for COSMOS, Stefanon et al. (2017) for EGS, and Santini
et al. (2015) for UDS. As these catalogues contain a number of

Fig. 7. Rest frame U − V colour vs. rest frame V − J colour for
CANDELS-z000. The colour cut is shown as a red line where galax-
ies below and to the right of the line are considered to be star-forming.

different M? and SFR values, the “M_med” is used for M? and we
average “SFR_11a_tau”, “SFR_13a_tau”, “SFR_2a_tau”, “SFR_
14a”, “SFR_14a_const”, “SFR_14a_deltau”, “SFR_14a_lin”,
“SFR_14a_tau”, “SFR_6a_deltau”, “SFR_6a_invtau”, and
“SFR_6a_tau” for SFR, as these columns are common across
all catalogues. These different SFR values assume different
star-formation histories (SFH) where “cons” is a constant
SFH, “tau” is an exponentially declining SFH, “deltau” is a
delayed-exponential, “lin” is linearly increasing, and “inctau” is
exponentially increasing. The numbers refer to the investigator
within the CANDELS team who lead the determination of that
SFR (Stefanon et al. 2017). For the redshift, the “z_best” value in
the catalogues were used. This value is the spectroscopic redshift,
if available, or the best photometric redshift from six members
within the CANDELS team (Guo et al. 2013; Santini et al. 2015;
Nayyeri et al. 2017; Stefanon et al. 2017).

To determine which CANDELS galaxies are star-forming,
we again apply the UV J colour cuts defined in Eq. (2) using
the rest frame U − V and V − J colours in the CANDELS cata-
logues, as shown in Fig. 7. Mass completeness limits were cal-
culated to be log(M?/M�) = 8.3, 8.7, 9.1, 9.4, and 9.9 within
redshift bins with edges at z = 0.0, 0.6, 0.85, 1.21, 1.66, and 4.0,
see also Sect. 2.4 below. These redshift bins were selected so
there are approximately 2000 galaxies within each bin after cut-
ting for mass completeness. For ease of reference, these redshift
bins shall be referred to as CANDELS-z000, CANDELS-z060,
CANDELS-z085, CANDELS-z121, and CANDELS-z166. A
summary of all data sets is presented in Table 1.

2.4. Mass completeness

Mass completeness limits were determined empirically by fol-
lowing Pozzetti et al. (2010) and using the galaxies identified as
star-forming. For each galaxy, the mass the galaxy would need to
have to be detected at the magnitude limit (Mlim) was calculated
with

log(Mlim) = log(M) − 0.4(xlim − x), (6)

where x is the observed magnitude in the r-band (for SDSS and
KiDS) or H-band (for CANDELS) and xlim is the limiting mag-
nitude of the observation. The limiting magnitudes for SDSS and
CANDELS are 17.77 and 24.50 respectively. The KiDS limiting
magnitude is 19.8, the limit of the GAMA survey. The faintest
20% of objects were selected and the limiting mass was the Mlim
value that 90% of these faintest objects lie below. This was done
as a function of redshift by binning the galaxies into redshift bins
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Table 1. Summary of data used.

Data Resolution Magnitude limit Redshift range Mass limit Training sample Complete sample
(arcsec) log(M?/M�) per class (Mass limited)

SDSS 1.4 17.77 0.005 < z ≤ 0.1 10.1 3003 206 037
KiDS 0.77 19.8 (a) 0.00 < z ≤ 0.15 9.6 1917 1270

CANDELS-z000 0.15 24.5 0.00 < z ≤ 0.60 8.3 694 (b) 2072
CANDELS-z060 0.15 24.5 0.60 < z ≤ 0.85 8.7 694 (b) 2004
CANDELS-z085 0.15 24.5 0.85 < z ≤ 1.21 9.1 694 (b) 2031
CANDELS-z121 0.15 24.5 1.21 < z ≤ 1.66 9.4 694 (b) 2010
CANDELS-z166 0.15 24.5 1.66 < z ≤ 4.00 9.9 694 (b) 1910

Notes. The SDSS and KiDS limiting magnitudes are in r-band while the CANDELS limiting magnitude in H-band. (a)As the training set is derived
from GAMA classifications, the limiting magnitude is that of the GAMA survey not that of the KiDS survey. (b)The CANDELS network was
trained with 694 galaxies per class for galaxies with 0.00 < z ≤ 4.00. The galaxies were split into the redshift bins shown after classification.

as described in Sect. 4 below. These completeness limits were
then applied to the entire galaxy population.

3. Tools

3.1. Convolutional neural networks
Convolutional neural networks (CNNs) are a subset of deep
learning (e.g. Lecun et al. 2015, and references therein). CNNs
are used for image classifications and employ a series of non-
linear mathematical functions, known as neurons, each with a
weight and bias value. The structure of a CNN is built from
a number of layers of these neurons. The lower layers are cre-
ated from two-dimensional kernels that are convolved with the
output of the layer below, giving CNN its name. Upper layers
are one-dimensional and each neuron in these layers is con-
nected to every neuron in the layer below. Forming a network
in such a way can rapidly create a large number of neurons that
require training resulting in many more free parameters within
the network than there are data to train them. To reduce this
dimensionality, pooling layers are employed between the lower
convolutional layers. These pooling layers group the inputs into
it and pass on the maximum or average value of the group,
depending on the type of pooling used, with the grouping done
in two-dimensions. The result is an output that is smaller in the
width-height plane but has the same depth as the input. The
weights and biases of the neurons within a network are trained,
in the case of supervised learning used here, by passing labelled
data through the network and requiring the output classification
to converge on these labels. A complete and thorough description
of CNNs is beyond the scope of this paper but further details are
explained in Lecun et al. (1998).

This paper uses the definitions of Pearson et al. (2019) for the
terms to describe the properties of CNNs. These terms may be an
alternate nomenclature to other works or may be unfamiliar. To
avoid confusion we reproduce these definitions in Appendix B.

3.1.1. Architecture of the CNN
For this work, we use the architecture developed in Pearson et al.
(2019) and use this to train on data from CANDELS and KiDS
(the network trained in Pearson et al. 2019 is used on the SDSS
images). This network is built with Tensorflow (Abadi et al.
2015) and comprises of a series of four, two-dimensional con-
volutional layers followed by two one-dimensional, fully con-
nected layers of 2048 neurons. The convolutional layers have
32, 64, 128, and 128 kernels of 6× 6, 5× 5, 3× 3, and 3× 3 pix-
els for the first, second, third, and fourth layers respectively with

the stride, how far the kernel is moved as it scans the input, set
at 1 pixel for all layers and the zero padding is set to “same”
to pad each edge of the image with zeros evenly (if required).
2× 2 pixel max-pooling is applied after the first, second, and
fourth convolutional layers to reduce the dimensionality of the
network. Batch normalisation (Ioffe & Szegedy 2015) is applied
after each layer, scaling the output between zero and one, and we
use Rectified Linear Units (ReLU; Nair & Hinton 2010) for acti-
vation, which returns max(x, 0) when passed x. We also apply
dropout (Srivastava et al. 2014) after each activation, to help
reduce over-fitting, with a dropout rate of 0.2 to randomly set the
output of neurons to zero 20% of the time during training. The
loss of this network is determined using softmax cross entropy
and optimised using the Adam algorithm (Kingma & Ba 2015)
with a learning rate of 5 × 10−5. The architecture can be seen
schematically in Fig. 8.

The inputs to the network are 64× 64 pixel images with either
three (CANDELS) or one (KiDS) colour channels, that are glob-
ally scaled between 0 and 1, preserving the relative flux densities
for multi colour images. The output layer has two neurons, one
for each of the merging and non-merging classes, and uses a soft-
max output, providing the probability for each class in the range
[0, 1] that sum to unity, that is softmax maps the un-normalised
input into it to a probability distribution over the output classes
if the training, test, and validation data sets have an equal num-
ber of each class. In the following, we use the output for the
merger class (frac_merger) although this can be considered to
be equivalent to using the output for the non-merger class as it is
1-(frac_merger) in our binary classification.

Due to the limitations of this architecture, specifically the
use of fully connected layers, it is not possible to have input
images of different pixel sizes. As a result, it is not possible to
use cutouts of different sizes that maintain the relative size of the
galaxy within the image. It is possible to resize the images but
this risks losing small scale structure when downscaling galaxies
or creating artefacts when upscaling. This may cause issues for
large galaxies at low redshifts and low resolution as the primary
galaxy may fill the image. However, it is possible to correctly
identify the galaxies that fill, or are larger than, the image if the
training set contains these types of galaxies, as has been shown
in Pearson et al. (2019).

3.1.2. Training, validation, and testing

If there are an unequal number of images in the two classes, the
larger class size is reduced by randomly removing images until
the classes are the same size. The images were then subdivided
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Fig. 8. Schematic representation of the architecture of the CNN used with input (three or one colour, 64× 64 pixel image) on the left and output
(binary classification of merger or non-merger) on the right. The sizes of the kernels (red) and layers are shown with the input layer having a depth
of three for the SDSS (gri) and CANDELS (1.6 µm, 1.25 µm, and 814 nm) data and one for the KiDS (r-band) data.

into three groups: 80% were used for training, 10% for valida-
tion, and 10% for testing. The training set was the set used to
train the network while the validation was used to see how well
the network was performing as training progressed. The testing
set was used once, and once only, to test the performance of
the network deemed to be the best from the validation. Testing
images are not used for validation to prevent accidental training
on the test data set.

During training, the input images were augmented. To
increase the number of galaxies to train with for CANDELS
and KiDS, the images were randomly augmented in one of the
following ways: the image was translated by up to 4 pixels in
each direction, zoomed by up to 2×, rotated by a random angle
about the galaxy, skewed by a random angle between 10◦ and
30◦ or passed without change. For the first four of these options,
random Gaussian noise was added so the galaxy appeared
“new” to the network. These augmented images were then ran-
domly rotated by 0◦, 90◦, 180◦ or 270◦ to reduce sensitivity to
galaxy orientation. Once complete, we have one network for the
CANDELS data and one for the KiDS data.

3.2. Forward modelling of the galaxy main sequence

In determining if galaxy mergers have an effect on the SFRs of
galaxies, it is necessary to remove the mass dependence from the
SFR. To do this we correct for the slope of the main sequence of
star-forming galaxies (MS, e.g. Brinchmann et al. 2004; Noeske
et al. 2007; Elbaz et al. 2007; Speagle et al. 2014; Pearson et al.
2018). The MS is an observed tight correlation between the M?

and SFR of star-forming galaxies that exists out to at least z = 6
with a scatter of ∼0.3 dex that is mass and redshift independent.
The slope of the MS is found to be less than one and to depend
on the redshift (Pearson et al. 2018). To correct for this slope, it
is necessary to first determine the MS of the galaxies.

To determine the MS, we follow Pearson et al. (2018) and use
forward modelling. Assuming a linear MS, we use the Markov
Chain Monte-Carlo (MCMC) sampler emcee (Foreman-Mackey
et al. 2013) to simultaneously fit the slope, normalisation, and
scatter of all the galaxies that are star-forming. At each sam-
pled point in the parameter space, model SFRs are created using
the observed stellar masses, observed redshifts, and the cor-
responding positions along the sampled MS. These SFRs are
then perturbed by selecting a random number from a Gaussian
distribution, with the standard deviation equal to the sampled

scatter, truncated to match the observed upper and lower SFR
limits. To include observational uncertainties on SFR and M?,
both the simulated SFR and the observed M? of each galaxy are
perturbed again by a random number sampled from a Gaussian
distribution with the standard deviation equal to the error in the
observed SFR or M?.

At each step, the mock SFR-M? plane is compared to the
observed SFR-M? plane by binning the data into identical bins in
M?. The means and standard deviations of the SFRs inside each
bin are calculated and the results from the mock data are com-
pared to the results from the observed data. The closer the means
and standard deviations in the mock bins are to the observed
bins, the more likely the model is a correct representation of the
observed data. Due to the large number of objects, for the SDSS
data we randomly select 50 000 star-forming objects within each
redshift bin to determine the MS.

4. Results

4.1. Performance of the CNN

The network we use for the SDSS objects is that of Pearson
et al. (2019). For completeness, we repeat these results here. The
SDSS network achieves an accuracy of 0.932 at validation with
a cut threshold of 0.5, that is any object with frac_merger> 0.5
is classified as a merging galaxy. We can alter the threshold value
to find the threshold value that simultaneously minimises the fall
out and maximises the recall. By doing this to set the threshold
to 0.57, the accuracy increases to 0.935. Using the same thresh-
old of 0.57 at testing, the final accuracy of the SDSS network is
0.915, with recall, precision, specificity, and negative predictive
value (NPV) of 0.920, 0.911, 0.910, and 0.919 respectively. We
apply the network to 256 497 SDSS galaxies with spectroscopic
redshifts between 0.005 and 0.1, to match the training set, result-
ing in 28 971± 2578 (14.1± 1.3%) galaxies being identified as
mergers. The errors in these merger counts are derived from
the precision of the network, see Appendix B for the definition.
The number of merging galaxies is multiplied by the precision
and the difference between this value and the original count is
taken as the error for the number of mergers and number of non-
mergers. This is likely an underestimate as the precision assumes
equal population sizes of mergers and non-mergers, which is evi-
dently not the case.
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Table 2. Statistics for trained CNNs.

SDSS (a) KiDS CANDELS
0.005 < z < 0.1 0.00 < z ≤ 0.15 0.00 < z ≤ 4.0

Cut threshold 0.57 0.52 0.47
ROC area 0.966 0.957 0.861
Recall 0.920 0.942 0.870
Precision 0.911 0.874 0.789
Specificity 0.910 0.864 0.768
NPV 0.919 0.938 0.855
Accuracy 0.915 0.903 0.818

Notes. Definitions of terms can be found in Appendix B. (a)The SDSS
network is that of Pearson et al. (2019).

For the KiDS network, we use the CNN to identify galax-
ies that fall within the GAMA09 field. This network achieves
an accuracy of 0.942 at validation with a cut threshold of 0.5.
If we alter the threshold to 0.52, to simultaneously minimise the
fall out and maximise the recall, the accuracy increases to 0.948.
Using the same threshold of 0.52 at testing, the final accuracy
of the KiDS network is 0.903, with recall, precision, specificity,
and NPV of 0.942, 0.874, 0.864, and 0.938 respectively. Despite
the resolution of the KiDS images being higher than that of the
SDSS images, the same image size resulted in the best perfor-
mance for the KiDS network: 64× 64 pixels. Larger images were
tried but these networks did not perform as well. Applying the
KiDS network to all galaxies in the GAMA09 field with photo-
metric redshifts below 0.15, a total of 1270 galaxies, we identify
436± 55 (30.0± 4.3%) merging galaxies.

The CANDELS network achieves an accuracy of 0.826 at
validation with a cut threshold of 0.5. If we decrease the thresh-
old to 0.47, the accuracy increases to 0.840. Using the same
threshold of 0.47 at testing, the final accuracy of the CAN-
DELS network is 0.818, with recall, precision, specificity, and
NPV of 0.870, 0.789, 0.768, and 0.855 respectively. The poorer
results for the CANDELS network is likely due to fewer pre-
classified objects to train the network with, 694 per class for
CANDELS compared to 3003 for SDSS, as well as the higher
redshifts of the training objects. The CANDELS images also
cover a much larger redshift range, resulting in a greater dis-
tribution of sizes in the image for galaxies at the same mass
than the SDSS images. Ideally, it would be preferable to split
the galaxies into redshift bins and train a network per redshift
to minimise this effect, however with so few objects it is not
feasible. We apply the CANDELS network to the objects with
H-magnitude <24.5 and 0.0 < z < 4.0 in the CANDELS COS-
MOS, EGS, and UDS fields and identify 3535± 746 merger can-
didates out of the 10 027 galaxies in these three fields. This is
a merger fraction of 35.3± 7.4%, which is high. The statistics
for all the networks are presented in Table 2 and examples of
non-merger and mergers selected by the CNNs can be found in
Appendix C.

4.2. SDSS

To determine the effect of galaxy mergers on SFR, we determine
the effect of mergers on the MS subtracted SFR. We fit the MS
to all the star-forming galaxies, both mergers and non-mergers
together, and the MS we have fitted to the SDSS data is shown
overlaid onto all the non-merging and merging galaxies in Fig. 9.
The MS subtracted SFR of the merging and non-merging galax-
ies are then compared by fitting a skewed Gaussian distribution,

Fig. 9. SFR-M? plane populated with (a) non-merging galaxies and
(b) merging SDSS galaxies. The colour indicates the number density
from low (light yellow) to high (dark purple). Overlaid in red is the
MS that has been fitted to all star-forming galaxies. As can be seen, the
distributions of the merging and non-merging galaxies are similar with
respect to the plotted MS.

of the form

y =
A
σ

exp
( (x − µ)

2σ2

)(
1 + erf

[
α(x − µ)
√

2σ

])
, (7)

to the distributions of the merging and non-merging galaxies,
where A is the amplitude, µ, and σ are the mean and standard
deviation of the Gaussian, α is the description of skewness, and
er f is the error function.

To fit the skewed Gaussian we bin the MS subtracted SFR
with bin sizes of 0.25 dex, between −3 log(M� yr−1) and 2
log(M� yr−1) and fit the skewed Gaussian to the number of galax-
ies in each bin. The errors on these counts were determined by
generating 100 realisations of the MS subtracted SFR by perturb-
ing the SFR and M? of each galaxy by a random number drawn
from a Gaussian distribution centred on the observed SFR or M?

and with the error on the value as the standard deviation. Each
realisation was then binned in the same way as the observations
and the standard deviation of the counts in the bins of the 100
realisations were taken as the errors on the counts of the obser-
vations. The scipy.optimize package curve_fit was then
used to fit the skewed Gaussian distribution to the counts in the
bins and account for their errors. The distributions are presented
in Fig. 10 with the parameters for the skewed Gaussian fits in
Table 3.

Comparing the skewed Gaussian fits to the distributions, we
find that the mean for the star-forming mergers and non-mergers
are consistent within three times the error of the mean (σµ) and
the merging galaxies have higher mean MS subtracted SFR. This
suggests that the star-forming population has a slightly, but not
significantly, increased SFR when undergoing a merger.
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Table 3. Best fit parameters for skewed Gaussian distributions fitted to
star-forming SDSS data.

Parameter Merger Non-merger

µ 0.33± 0.02 0.25± 0.01
σ 0.43± 0.02 0.39± 0.01
α −1.29± 0.18 −1.52± 0.16

Notes. µ and σ are in units of log(M� yr−1).

Fig. 10. Distribution of MS subtracted SFR for star-forming SDSS non-
merging galaxies (blue) and merging galaxies (red). As can be seen, the
merging star-forming population has a slightly higher mean MS sub-
tracted SFR.

Fig. 11. Distribution of MS subtracted SFR for star-forming KiDS non-
merging galaxies (blue) and merging galaxies (red). As can be seen, the
merging star-forming galaxies have a similar mean MS subtracted SFR
to the non-merging galaxies.

4.3. KiDS

As with the SDSS data, we fit a skewed Gaussian distribution to
the MS subtracted SFR of the star-forming galaxies. An example
of the resulting MS subtracted SFR distributions for the KiDS is
shown in Fig. 11. Table 4 shows that the merging star-forming
galaxies have higher average SFRs. The differences not large,
with the mean MS subtracted SFR being within 3σµ of each
other.

Table 4. Best fit parameters for skewed Gaussian distributions fitted to
star-forming KiDS data.

Parameter Merger Non-merger

µ 0.44± 0.1 0.13± 0.18
σ 0.47± 0.09 0.41± 0.08
α −1.53± 0.91 −0.63± 0.78

Notes. µ and σ are in units of log(M� yr−1).

Fig. 12. Distribution of MS subtracted SFR for the 0.85 < z ≤ 1.21
redshift bin for CANDELS non-merging galaxies (blue) and merging
galaxies (red). This is the only data that is fitted with a double Gaussian
distribution due to the clear multi-modal population. As can be seen,
the main and secondary populations have a slightly higher mean MS
subtracted SFR than the non-merging galaxies.

4.4. CANDELS

Due to the larger redshift coverage of the CANDELS data, we
can examine if the impact of galaxy mergers on SFR changes as a
function of redshift. To do this, we divided the data into redshift
bins with edges at z = 0.0, 0.6, 0.85, 1.21, 1.66, and 4.0, each
with its own mass completeness limit and containing approxi-
mately 2000 galaxies after mass completeness cuts have been
applied. Each redshift bin also had its own main sequence fit-
ted as outlined in Sect. 3.2. For ease of reference, these redshift
bins shall be referred to as CANDELS-z000, CANDELS-z060,
CANDELS-z085, CANDELS-z121, and CANDELS-z166.

As before, we fit the distributions of the star-forming CAN-
DELS galaxies with a skewed Gaussian function. However, there
is an indication of a second, high SFR population in CANDELS-
z085 (0.85 < z ≤ 1.21), identifiable when the error on the
skew of the both the merging and non-merging distributions are
greater than 104 and so in that bin only, we fit a double Gaussian
distribution and consider the lower mean to be the mean of the
star-forming population. The distributions for the MS subtracted
SFR for this redshift bin is shown in Fig. 12.

Using the best fitting values for the skewed and double Gaus-
sian functions presented in Table 5, in the lowest redshift bin
the merging galaxies act to suppress the SFR of galaxies, with
the mean MS subtracted SFR for merging galaxies lower than
non-merging galaxies by more than 3σµ. At redshifts above
z = 0.60, the star-forming mergers have a higher mean than the
star-forming non-mergers or are consistent within 3σµ.
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Table 5. Best fit parameters for skewed or double Gaussian distributions
fitted to star-forming CANDELS data.

Redshift Parameter Merger Non-merger

µ −0.37± 0.17 −0.27± 0.02
0.0 < z ≤ 0.6 σ 0.47± 0.08 0.29± 0.02

α 9999.489± 87523220.85 1.21± 0.26
µ 0.10± 0.12 0.02± 0.11

0.6 < z ≤ 0.85 σ 0.24± 0.07 0.24± 0.06
α −0.878± 1.17 −0.79± 0.99

0.85 < z ≤ 1.21 µ −0.12± 0.01 −0.16± 0.01
σ 0.20± 0.01 0.20± 0.01
µ −0.43± 0.02 −0.42± 0.02

1.21 < z ≤ 1.66 σ 0.62± 0.03 0.52± 0.03
α 5.058± 1.24 3.13± 0.69
µ −0.47± 0.02 −0.5± 0.02

1.66 < z ≤ 4.0 σ 0.65± 0.03 0.61± 0.03
α 3.241± 0.51 3.7± 0.61

Notes. For the 0.85 < z ≤ 1.21 bin, where a double Gaussian is used,
the star-forming component is the component with the lowest µ. µ, and
σ are in units of log(M� yr−1).

5. Discussion

Here we present discussions of our results. We note that direct
comparisons between the results of the three data sets is diffi-
cult due to the different definitions of mergers employed for the
training data sets as well as difference in data quality, such as
depth and resolution, which can also influence merger identifi-
cation. While the merger definitions are similar, as they are all
based on visual classification, the specifics of the definitions dif-
fer. The classifications also cover both major and minor mergers,
with approximately half of each training set comprising of major
mergers. This likely results in a similar split for the mergers clas-
sified by our networks.

5.1. Merger influence on SFR

Across the SDSS, CANDELS, and KiDS data sets there is a
difference between the SFRs of the merging and non-merging
galaxies. However, the difference between the two is small and
varies between the data sets as well as within the data sets. What
is evident is that the merging systems are not only found as star-
burst galaxies but also as star-forming and quiescent systems.

Comparing the SDSS data with the KiDS data, we find little
difference in how mergers are affecting the SFR. Both data sets
show that star-forming merging galaxies have a slight increase
in SFR. Within the CANDELS-z000 data the opposite is found:
we find that there is a decrease in the MS subtracted SFR, sug-
gesting that galaxy mergers are acting to reduce the SFR of the
star-forming galaxies. The full comparison between the aver-
age SFRs for all data sets at all redshifts studied can be seen
in Fig. 13.

The slight difference between the merging and non-merging
SFRs is also not a result of the observation bands or methods
used to derive the SFR. The mergers in all three surveys are
detected using different bands: SDSS uses three optical bands
(gri), CANDELS uses observed frame near infrared (Hubble
1.6 µm, 1.25 µm, and 814 nm bands), and KiDS uses a single
optical band (r band). SFRs in the three surveys are also derived
differently: SDSS uses Hα based SFR while CANDELS and
KiDS use SED derived SFR. The models used to derive the
CANDELS and KiDS SFRs and M? are also different. Thus, the

Fig. 13. Average MS subtracted SFR of star-forming galaxies for SDSS
merging (purple circle) and non-merging (dark blue diamond); KiDS
merging (light blue circle) and non-merging (green diamond); and
CANDELS merging (orange circles) and non-merging (red diamonds)
galaxies. As can be seen, the change in SFR between the merging and
non-merging galaxies is typically small.

small effect of merging galaxies on the SFRs seen is this study
is robust.

Our results are qualitatively in line with previous work in
that we only find small (less than a factor of two) changes in
SFR. Lackner et al. (2014) and Knapen et al. (2015) find that
mergers change the SFR by up to a factor of two. While we do
not find that mergers always result in an increase in SFR, we do
find that the change in SFR caused by a galaxy merger is typi-
cally small over the timescale of the entire merger. If an increase
in SFR due to a galaxy merger is large but shorter lived, the effect
will be hidden by the larger number of galaxies not undergoing
such a burst of star formation. The changes in average MS sub-
tracted SFR are small and typically found to be a factor of ∼1.2.
Similarly, Silva et al. (2018) find that mergers produce no sig-
nificant change to the SFR of galaxies, which is consistent with
the results of our study. However, caution must be taken with
this comparison as the work of Silva et al. (2018) uses merg-
ers where the two merging galaxies are within 3−15 kpc of each
other, something that this work does not take into account.

This study has its limitations. It is likely that we are observ-
ing different stages of galaxy mergers but our method is cur-
rently unable to determine at what stage the mergers are. As a
result, it is not possible to say, from this study, if mergers cause
a migrating of the merging galaxies across the SFR-M? plane or
if the merger only slightly affects the SFR resulting in the small
changes we observe.

5.2. Merger fractions

The merger fractions for CANDELS, 35.3± 7.4%, and KiDS,
36.9± 5.3%, are notably higher than the merger fractions for the
SDSS data at 14.1± 1.3%, see Table 6 and Figs. 14 and 15. The
errors in these merger fractions are derived from the precision
of the network, see Appendix B for the definition. The number
of merging galaxies is multiplied by the precision and the dif-
ference between this value and the original count is taken as the
error for the number of mergers and number of non-mergers. The
merging fraction for the precision corrected counts is then cal-
culated and the difference between the original fraction and this
precision corrected fraction is taken as the error. This is likely an
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Table 6. Merger fraction by redshift and data set for quiescent, star-
forming, and total galaxy populations.

Data set Total Quiescent Star-forming

SDSS 14.1± 1.3% 14.3± 1.3% 13.4± 1.2%
KiDS 30.0± 4.3% 19.4± 2.8% 36.9± 5.3%
CANDELS-z000 32.0± 6.8% 30.0± 6.2% 32.4± 6.8%
CANDELS-z060 32.2± 6.8% 20.2± 4.3% 33.6± 7.1%
CANDELS-z085 32.6± 6.9% 24.4± 5.1% 33.3± 7.0%
CANDELS-z121 37.8± 8.0% 23.9± 5.3% 39.4± 8.3%
CANDELS-z166 42.1± 8.9% 28.5± 5.9% 44.3± 9.3%

Notes. Errors are derived from correcting for the precision of the
network.

Fig. 14. Total merger fraction as a function of redshift for SDSS (dark
blue circle), KiDS (light blue circle), and CANDELS (red circles) by
redshift bin. Also plotted are the mass limited merger fractions with
log(M?/M�)> 10.0 from Conselice et al. (2003, green stars), Cotini
et al. (2013, lilac diamonds), Lotz et al. (2011) magnitude limited
merger fractions with MB > −19.2 (orange crosses), and the Duncan
et al. (2019) lower mass (9.7< log(M?/M� < 10.3, L, purple left tri-
angles) and higher mass (log(M?/M� > 10.3, H, brown right trian-
gles) merger fractions. The SDSS data are slightly higher than would
be expected and the KiDS and CANDELS merger fractions are approx-
imately a factor of two higher than the other results.

underestimate as the precision assumes equal population sizes of
mergers and non-mergers, which is evidently not the case.

Even only considering the lowest redshift bin for CAN-
DELS, 0.00 < z ≤ 0.60, the merger fraction is much higher than
the SDSS and higher redshift KiDS at 32.0± 6.8%. It is unsur-
prising that this becomes a larger issue as the redshift increases
because the pixel size of the galaxy within the image becomes
smaller and the galaxies themselves become fainter, suppressing
the features that the CNN looks for to identify a merging galaxy.

Comparing our merger fractions to other works shows that
the CANDELS results are indeed much higher than would be
expected. Figure 14 shows the comparison of this work with
Conselice et al. (2003), who use CAS to identify mergers, Lotz
et al. (2011), who use Gini and M20, Cotini et al. (2013), who use
CAS, Gini and M20, and Duncan et al. (2019), who use the close
pair method. The results of Duncan et al. (2019) are the merger
pair fraction (the number of pairs of merging galaxies divided
by the total number of galaxies) and so we multiply their values
by 0.6 to compare to our results (Lotz et al. 2011; Mundy et al.
2017).

Fig. 15. Merger fraction of quiescent (diamonds) and star-forming (cir-
cles) as a function of redshift for SDSS (purple and blue), KiDS (yel-
low and green), and CANDELS (orange and red). There is no overall
trend with redshift with SDSS having a lower merger fraction for the
star-forming galaxies, KiDS having a higher merger fraction for star-
forming galaxies, and CANDELS star-forming galaxies having a higher
merger fraction at all redshifts.

The SDSS merger fraction is higher than the other works in
the same redshift range but is consistent with the merger frac-
tions of Conselice et al. (2003) and Lotz et al. (2011) at higher
redshifts. The KiDS data has a merger fraction that is higher
compared to the other works, both at similar and higher red-
shifts, similar to the merger fractions from CANDELS as dis-
cussed above.

We can compare the merger fractions of the quiescent and
star-forming galaxies as shown in Fig. 15. The SDSS data has a
slightly lower merger fraction for the quiescent galaxies than the
star-forming galaxies, although the difference is 0.2 percentage
points, much less than the error on the merger fractions. KiDS
data has a higher merger fraction for the quiescent galaxies than
the star-forming galaxies. As these two data sets cover simi-
lar redshift ranges one would expect to see a similar trend in
the merger fractions of these two populations. The difference in
overall merger fractions may be a result of the SDSS and KiDS
networks not being identical and the different selection criteria
for the training sets.

This is qualitatively different to the CANDELS-z000 data
that has a slightly lower quiescent merger fraction than star-
forming merger fraction. This difference is more pronounced at
higher redshifts resulting in a different conclusion from the KiDS
data. The CANDELS data suggests that there is a higher fraction
of star-forming galaxy mergers than quiescent galaxy mergers at
all redshifts, implying that galaxy mergers do not often act to
suppress SFRs.

The CNNs used in this work are not perfect as they mis-
classify mergers as non-mergers and non-mergers as mergers.
The latter of these misclassifications may present issues with our
analysis. As non-mergers are more prevalent than mergers, rel-
atively high specificity of a network can still result in a large
population of non-merging galaxies being added to the merging
classification. If galaxy mergers do significantly change the SFR
of the galaxies, the non-merging interlopers may act to suppress
this effect in the statistical analysis used in this paper. However,
as this work is primarily comparing the relative SFRs of merg-
ing and non-merging galaxies, we do not believe that this overly
impacts our results as the differences we see in SFRs between
the mergers and non-mergers is small.
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Fig. 16. Merger fraction for star-forming galaxies with SFRs above indi-
cated distances above the MS for SDSS and KiDS data (top panel) and
CANDELS data (bottom panel). To avoid low number statistics, only
thresholds above which there are 50, or more, galaxies are shown. The
SDSS (top panel, purple), KiDS (top panel, blue), and all CANDELS
data show a trend of increasing merger fraction as the distance to the
MS increases, although the CANDELS-z000 drops again above 0.62
log(M� yr−1).

5.3. Starburst merger fraction

We avoid using a specific definition of a starburst galaxy and
instead opt to study the merger fraction as a function of distance
above the MS. For ease of reference, we refer to the galaxies
above a given SFR threshold as starbursting in this subsection,
even if the threshold is the MS. To this end, we study the fraction
of star-forming galaxies above a certain distance above the MS
that are merging for all three data sets (number of merging galax-
ies above a certain threshold divided by total number of galaxies
above the same threshold). These trends are presented in Fig. 16.

The SDSS and KiDS data show an increase in the merger
fraction as the distance from the MS increases, with SDSS
rising to ∼1.1 log(M� yr−1) and KiDS slowly declining above
∼0.8 log(M� yr−1). A similar trend is seen in the CANDELS
data, with an increase in merger fraction as the distance from
the MS increases. CANDELS-z000 rises to approximately 0.3
log(M� yr−1) while the other three CANDELS redshift bins
rise to approximately 0.8, 1.2, 1.4, and 1.6 for CANDELS-
z060, CANDELS-z085, CANDELS-z121, and CANDELS-z166
respectively. Thus, the merger fraction increases as the star-
formation rate increases showing that mergers can act to trigger

Fig. 17. Fraction of star-forming, merging galaxies with SFRs above
given distances above the MS (solid lines) and fraction of star-forming,
non-merging galaxies with SFRs above given distances above the MS
(dashed lines). Top panel: SDSS and KiDS data sets while bottom panel:
CANDELS data. To avoid low number statistics, only thresholds above
which there are 50, or more, galaxies are shown. The SDSS (top panel,
purple), KiDS (top panel, blue), and all CANDELS data show that there
is a higher fraction of the total number of merging galaxies above nearly
all distance above the MS.

high SFRs and starbursts. We note, however, that the number
of galaxies in Fig. 16 decreases as the distance above the MS
increases meaning that the lower merger fraction at lower dis-
tance can contain more mergers than the higher merger fraction
at larger distances. This allows for the small changes in SFR
seen in the star-forming population despite the merger fraction
increasing as the distance above the MS increases. This is qual-
itatively consistent with Luo et al. (2014), who find approxi-
mately half of starburst systems (defined as an increase in SFR
by a factor of five or more) are undergoing a merger while the
fraction of mergers in non-starburst systems is lower.

We can also compare the fraction of star-forming, merging
galaxies that have SFRs above a certain distance above the MS
(number of merging galaxies above a certain threshold divided
by total number of merging galaxies) with the fraction of star-
forming, non-merging galaxies that have SFRs above a certain
distance above the MS as shown in Fig. 17. The SDSS, KiDS,
and CANDELS data all show that a higher fraction of starburst
mergers are found than the fraction of starburst non-mergers,
although this switches at larger distances for the KiDS data.
This is clear evidence that the merging galaxies are causing an
increase in SFR.
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6. Conclusions

Galaxy mergers are an important part of how galaxies grow
and evolve over the history of the universe. However, identify-
ing galaxy mergers is a difficult and time-consuming task. Here
we have employed deep learning techniques to identify galaxy
mergers in SDSS, KiDS, and CANDELS imaging data. We have
then used these classifications to explore how galaxy mergers
affect SFRs.

We find that mergers do indeed influence the SFR in the
merging galaxies. However, the resulting change in SFR is small,
typically a factor of∼1.2. Within the SDSS data, the star-forming
objects have a slight increase, on average, that is also seen in
the KiDS data within a similar redshift range. Between 0.0 <
z ≤ 0.6, the CANDELS data shows a slight decrease in SFR for
the star-forming population when examining the MS subtracted
SFR. Continuing to higher redshifts with the CANDELS data,
we again find slight increases SFR for the merging galaxies with.
Overall, the change seen in the SFR of the star-forming popula-
tion is small, with the majority of changes in the SFR in all data
sets being less than 3σµ, a factor of ∼1.2.

The merger fraction of quiescent and star-forming galaxies
also depends on the data set. The SDSS data has a slightly high
merger fraction for quiescent galaxies compared to star-forming
galaxies while the KiDS and CANDELS data is the opposite.
Again, definite conclusions are difficult with the CANDELS and
KiDS data showing that galaxy mergers are more common in
star-forming galaxies at any redshift while the SDSS data does
not.

Instead of directly examining the fraction of starburst galax-
ies that are mergers, we examine the merger fraction as a func-
tion of distance above the MS. For the SDSS, CANDELS, and
KiDS the fraction of mergers increases as the distance above the
MS increases. This is evidence that mergers can cause periods of
enhanced star formation.

Our current work does not determine the stage of the galaxy
merger but we can see by eye that our merger samples include
mergers at different stages. Thus, it is possible that the period
during which SFR is boosted significantly is very short during
the merging process and missed within our more time averaged
analysis. It could also be that SFR is only boosted significantly
for a small fraction of merger types or a combination of both
scenarios. Future work will aim to overcome these shortcomings
by determining the merger stage.
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Appendix A: De-blending the SPIRE data

For de-blending the SPIRE data, we follow Pearson et al. (2017).
CIGALE is used with the 9-band KiDS catalogue data to gener-
ate estimates of the SPIRE flux densities and we then select all
objects with a predicted 250 µm flux density above 1.1 mJy. The
CIGALE flux density estimates are then used as a flux density
prior inside XID+ and all three SPIRE bands in the GAMA09
field are de-blended.

For our CIGALE models, we follow Pearson et al. (2018) but
remove the active galactic nuclei component, due to the limited
wavelength coverage available, and increase the sampling of the
age of the stellar population. Thus, we use a double exponentially
declining star-formation history, Bruzual & Charlot (2003) stellar
emission, Chabrier (2003) IMF, Charlot & Fall (2000) dust atten-
uation, and the updated Draine et al. (2014) version of the Draine
& Li (2007) infrared dust emission. A list of parameters, where
they differ from the default values, can be found in Table A.1.

Table A.1. Parameters used for various properties in CIGALE model SEDs where they differ from default values.

Parameter Value Description

Star-formation history
τmain 1.0, 1.8, 3.0, 5.0, 7.0 e-folding time (main)
τburst 9.0, 13.0 e-folding time (burst)
fburst 0.00, 0.10, 0.20, 0.30, 0.40 Burst mass fraction
Age 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, Population age (main)

3.50, 4.00, 4.50, 5.00, 5.50, 6.00,
6.50, 7.00, 7.50, 8.00, 8.50, 9.00,

9.50, 10.00, 10.50, 11.00, 12.00, 13.00
Burst age 0.001, 0.010, 0.030, 0.100, 0.300 Population age (burst)

Stellar emission
IMF Chabrier (2003) Initial mass function
Z 0.02 Metallicity (0.02 is Solar)
Separation age 0.01 Separation between young and old stellar populations

Dust attenuation
ABC

V 0.3, 1.2, 2.3, 3.3, 3.8 V-band attenuation of the birth clouds
SlopeBC −0.7 Birth cloud attenuation power law slope
BC to ISM Factor 0.3, 0.5, 0.8, 1.0 Ratio of the birth cloud attenuation to ISM attenuation
SlopeISM −0.7 ISM attenuation power law slope

Dust emission
qPAH 0.47, 1.12, 2.50, 3.9 Mass fraction of PAH
Umin 5.0, 10.0, 25.0 Minimum scaling factor of the radiation field intensity
α 2.0 Dust power law slope
γ 0.02 Illuminated fraction

Notes. All ages and times are in Gyr.
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Appendix B: CNN performance definitions

This paper uses the definitions of Pearson et al. (2019) for the
terms to describe the properties of CNNs. These terms may be

an alternate nomenclature to other works or may be unfamiliar.
To avoid confusion we reproduce these definitions in Table B.1.

Table B.1. Terms used when describing neural network performance from Pearson et al. (2019).

Term Definition

Positive (P) An object classified in the catalogues or identified by a
network as a merger.

Negative (N) An object classified in the catalogues or identified by a
network as a non-merger.

True Positive (TP) An object classified in the catalogues as a merger that is
identified by a network as a merger.

False Positive (FP) An object classified in the catalogues as a non-merger that
is identified by a network as a merger.

True Negative (TN) An object classified in the catalogues as a non-merger that
is identified by a network as a non-merger.

False Negative (FN) An object classified in the catalogues as a merger that is
identified by a network as a non-merger.

Recall Fraction of objects correctly identified by a network as a
merger with respect to the total number of objects classi-
fied in the catalogues as mergers.

TP/(TP+FN)

Fall-out Fraction of objects incorrectly identified by a network as
a merger with respect to the total number of objects clas-
sified in the catalogues as mergers.

FP/(TP+FN)

Specificity Fraction of objects correctly identified by a network as
a non-merger with respect to the total number of objects
classified in the catalogues as non-mergers.

TN/(TN+FP)

Precision Fraction of objects correctly identified by a network as a
merger with respect to the total number of objects identi-
fied by a network as a merger.

TP/(TP+FP)

Negative Predictive Value (NPV) Fraction of objects correctly identified by a network as
a non-merger with respect to the total number of objects
identified by a network as a non-merger.

TN/(TN+FN)

Accuracy Fraction of objects, both merger and non-merger, cor-
rectly identified by a network.

(TP+TN)/(TP+FP+TN+FN)
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Appendix C: Example non-mergers and mergers

Here we present example non-mergers and mergers as defined by
the CNN. The images shown are all 64× 64 pixel images with

Fig. C.1. Examples of non-merging galaxies (top row) and merg-
ing galaxies (bottom nine rows) for SDSS data set as defined by
the CNN. Images are gri composite with a size of 64× 64 pixel or
13.7× 13.7 arcsec.

gri composite for SDSS, Fig. C.1, greyscale r-band for KiDS,
Fig. C.2, and 1.6 µm, 1.25 µm, 814 nm composite for CAN-
DELS, Fig. C.3.

Fig. C.2. Examples of non-merging galaxies (top row) and merg-
ing galaxies (bottom nine rows) for KiDS data set as defined by the
CNN. Images are greyscale r-band with a size of 64× 64 pixel or
25.3× 25.3 arcsec.
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Fig. C.3. Examples of non-merging galaxies (top row) and merging
galaxies (bottom nine rows) for CANDELS data set as defined by the
CNN. Images are 1.6 µm, 1.25 µm, 814 nm composite with a size of
64× 64 pixel or 3.8× 3.8 arcsec.
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