2,974 research outputs found

    Rapid and precise analysis for calcium in blood serum

    Get PDF
    Differential absorption spectrophotometric technique, using murexide, gives a highly precise analysis of calcium in volumes of blood serum as small as 0.01 ml. The method of additions and proper timing allows compensation to be made for fading, variation in type of serum or plasma, and aging of the specimen

    Effects of Pore-Scale Disorder on Fluid Displacement in Partially-Wettable Porous Media

    Get PDF
    We present a systematic, quantitative assessment of the impact of pore size disorder and its interplay with flow rates and wettability on immiscible displacement of a viscous fluid. Pore-scale simulations and micromodel experiments show that reducing disorder increases the displacement efficiency and compactness, minimizing the fluid-fluid interfacial area, through (i) trapping at low rates and (ii) viscous fingering at high rates. Increasing the wetting angle suppresses both trapping and fingering, hence reducing the sensitivity of the displacement to the underlying disorder. A modified capillary number Ca* that includes the impact of disorder λ on viscous forces (through pore connectivity) is direct related to λ, in par with previous works. Our findings bear important consequences on sweep efficiency and fluid mixing and reactions, which are key in applications such as microfluidics to carbon geosequestration, energy recovery, and soil aeration and remediation.<br/

    Generative grammars and the computer-aided composition of music

    Get PDF

    The Bulge-Halo Connection in Galaxies: A Physical Interpretation of the Vcirc-sigma_0 Relation

    Full text link
    We explore the dependence of the ratio of a galaxy's circular velocity, Vcirc, to its central velocity dispersion, sigma_0, on morphology, or equivalently total light concentration. Such a dependence is expected if light traces the mass. Over the full range of galaxy types, masses and brightnesses, and assuming that the gas velocity traces the circular velocity, we find that galaxies obey the relation log(Vcirc/sigma_0)= 0.63-0.11*C28 where C28=5log(r80/r20) and the radii are measured at 80 percent and 20 percent of the total light. Massive galaxies scatter about the Vcirc = sqrt(2)*sigma_0 line for isothermal stellar systems. Disk galaxies follow the simple relation Vcirc/sigma_0=2(1-B/T), where B/T is the bulge-to-total light ratio. For pure disks, C28~2.8, B/T -> 0, and Vcirc~=2*sigma_0. Self-consistent equilibrium galaxy models from Widrow & Dubinski (2005) constrained to match the size-luminosity and velocity-luminosity relations of disk galaxies fail to match the observed Vcirc/sigma_0 distribution. Furthermore, the matching of dynamical models for Vcirc(r)/sigma(r) with observations of dwarf and elliptical galaxies suffers from limited radial coverage and relatively large error bars; for dwarf systems, however, kinematical measurements at the galaxy center and optical edge suggest Vcirc(Rmax) > 2*sigma_0 (in contrast with past assumptions that Vcirc = sqrt(2)*sigma_0 for dwarfs.) The Vcirc-sigma_0-C28 relation has direct implications for galaxy formation and dynamical models, galaxy scaling relations, the mass function of galaxies, and the links between respective formation and evolution processes for a galaxy's central massive object, bulge, and dark matter halo.Comment: Accepted for publication in ApJL. Current version matches ApJL page requiremen

    Discovery of Multi-Phase Cold Accretion in a Massive Galaxy at z=0.7

    Full text link
    We present detailed photo+collisional ionization models and kinematic models of the multi-phase absorbing gas, detected within the HST/COS, HST/STIS, and Keck/HIRES spectra of the background quasar TON 153, at 104 kpc along the projected minor axis of a star-forming spiral galaxy (z=0.6610). Complementary g'r'i'Ks photometry and stellar population models indicate that the host galaxy is dominated by a 4 Gyr stellar population with slightly greater than solar metallicity and has an estimated log(M*)=11 and a log(Mvir)=13. Photoionization models of the low ionization absorption, (MgI, SiII, MgII and CIII) which trace the bulk of the hydrogen, constrain the multi-component gas to be cold (logT=3.8-5.2) and metal poor (-1.68<[X/H]<-1.64). A lagging halo model reproduces the low ionization absorption kinematics, suggesting gas coupled to the disk angular momentum, consistent with cold accretion mode material in simulations. The CIV and OVI absorption is best modeled in a separate collisionally ionized metal-poor (-2.50<[X/H]<-1.93) warm phase with logT=5.3. Although their kinematics are consistent with a wind model, given the 2-2.5dex difference between the galaxy stellar metallicity and the absorption metallicity indicates the gas cannot arise from galactic winds. We discuss and conclude that although the quasar sight-line passes along the galaxy minor axis at projected distance of 0.3 virial radii, well inside its virial shock radius, the combination of the relative kinematics, temperatures, and relative metallicities indicated that the multi-phase absorbing gas arises from cold accretion around this massive galaxy. Our results appear to contradict recent interpretations that absorption probing the projected minor axis of a galaxy is sampling winds.Comment: 16 pages, 11 figures, accepted for publication in MNRA

    Symptoms and Self-Care in Old Age

    Full text link
    Self-care has recently come to be recognized as the predominant form of response to illness among the general population, but little is known regarding beliefs and practices of the aged. In this study, beliefs regarding the appropriate response to 53 common symptoms were investigated and contrasted to actual responses. Various forms of self-care were seen as appropriate responses to symptoms ranging from minor to potentially serious. Preference for self-care responses appears to be related to perceived severity of symptoms and the perceived effectiveness of available self-care responses.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66474/2/10.1177_073346488600500207.pd

    Determining Ages of APOGEE Giants with Known Distances

    Get PDF
    We present a sample of local red giant stars observed using the New Mexico State University 1 m telescope with the APOGEE spectrograph, for which we estimate stellar ages and the age distribution from the high-resolution spectroscopic stellar parameters and accurate distance measurements from Hipparcos. The high-resolution (R ~ 23,000), near infrared (H-band, 1.5-1.7 micron) APOGEE spectra provide measurements of the stellar atmospheric parameters (temperature, surface gravity, [M/H], and [alpha/M]). Due to the smaller uncertainties in surface gravity possible with high-resolution spectra and accurate Hipparcos distance measurements, we are able to calculate the stellar masses to within 40%. For red giants, the relatively rapid evolution of stars up the red giant branch allows the age to be constrained based on the mass. We examine methods of estimating age using both the mass-age relation directly and a Bayesian isochrone matching of measured parameters, assuming a constant star formation history (SFH). To improve the prior on the SFH, we use a hierarchical modeling approach to constrain the parameters of a model SFH from the age probability distribution functions of the data. The results of an alpha dependent Gaussian SFH model shows a clear relation between age and [alpha/M] at all ages. Using this SFH model as the prior for an empirical Bayesian analysis, we construct a full age probability distribution function and determine ages for individual stars. The age-metallicity relation is flat, with a slight decrease in [M/H] at the oldest ages and a ~ 0.5 dex spread in metallicity. For stars with ages < 1 Gyr we find a smaller spread, consistent with radial migration having a smaller effect on these young stars than on the older stars.Comment: 14 page, 18 figures, accepted to ApJ with minor revisions, full electronic table of data available upon publicatio
    corecore