
GENERATIVE GRAMMARS AND THE COMPUTER—AIDED COMPOSITION

OF MUSIC

Steven R. Holtzman

Ph. D.

University of Edinburgh

1980

rn

ABSTRACT

The application of computers in music has focused almost
exclusively on problems of sound synthesis. The application of
computers in the process of music composition, ie. the generation
of sound structures, remains largely unexplored.

This thesis describes a computer software system designed to
usefully aid composers in the process of music composition by
automating part of the composition process. The composition
system described uses generative grammars to automate the
generation of music structures.

The core of the system described is two facilities. These are
1) a facility for formally and explicitly defining the grammars of
music languages, ie. the GGDL programming language, and 2) a
facility for using GGDL language definitions to automatically
generate utterances in the specified languages, ie. the
GGDL—Generator.

An implementation of these facilities has been integrated with
programs to enable sound synthesis and the graphic editing of
music structures. The system, implemented on a network of
computers at the Department of Computer Science, Unversity of
Edinburgh, is described.

The thesis presents and evaluates some of the practical results
obtained using the GGDL computer aided composition system. It is
shown how the system may be used to compose macro- and micro—sound
structures. An automated digital sound synthesis instrument
developed using generative grammars is also described.

ACKNOWLEDGEMENT

I should like to thank R. Thonnes for his advice concerning the

implementation of work reported in this thesis and Professor

Sidney Michaelson for his helpful comments on a draft of this

thesis. Special thanks are due to my supervisors Jeff Tansley and

G. H. Koenig for their support and encouragement, and to Professor

Bernard Meltzer for initially encouraging me to undertake the

research reported in this thesis.

The work reported in this thesis was carried out between

October 1977 and December 1978 in the Department of Artificial

Intelligence, University of Edinburgh, and between January 1979

and September 1980 in the Department of Computer Science,

University of Edinburgh. The work was supported by a University

of Edinburgh Studentship.

Some of the work presented in this thesis has also been

reported in a number of publications. These are listed in the

bibliography: Holtzman 1978, 1978b, 1979, 1980, 1980b, 1980c,

Im

DECLARATION

I declare that this thesis has been composed by myself and that

the work reported is my own.

CONTENTS

CHAPTER 1: Introduction

An Aid for the Generation of Music Structures

Generative Grammars and Automated Composition

The GGDL-CAC System

Composition with the GGDL-CAC System

CHAPTER 2: Review of the Literature

"Computer-Aided Composition"

Hiller's "Illiac Suite"

The ST-programs of lannis Xenakis

The Composition Programs of G. M. Koenig

Grammars and Automatic Composition

CHAPTER 3: The GGDL Generative Grammar Definition Language

Generative Grammars

A Transformational Grammar

Describing Music Languages with Grammars

3.1 Phrase-Structure Rules

3.1.1 Rewrite Rules

3.1.11 Rewrite Conventions

3.1.12 Rewrite Rule Priority

3.1.13 Terminals and Non-Terminals

3.1.14 Types of Rewrite Rules

3.1.111 Type 3 Grammars

3.1.142 Type 2 Grammars

1

3.1.143 Type 1 Grammars

3.1.144 Type 0 Grammars

3.1.2 Control of Rewriting

3.1.21 System Control Functions

3.1.211 Random Selection

3.1.212 'Blocked' Generation

3.1.213 Finite-State Generation

3.1.22 Non-System Rewrite Control

3.1.3 Multiple Invocations

3.1.4 Metaproductions

3.2 Transformational Rules

3.2.1 Structural Change Markers

3.2.11 @1 - Inversion Transformation

3.2.12 @T - Transposition Transformation

3.2.13 @B - Backwards (Retrograde) Transformation

3.2.14 €M - Merge Transformation

3.3 Morphological Rules

3.3.1 Morphological Definition

CHAPTER 4: The Generation of Music Structures

Steve Reich's "Clapping Music"

A Schoenberg Trio

David Hamilton's "Four Canons"

Compositional Considerations

CHAPTER 5: Composing at the Micro-level

After Artaud

Generating Symmetrical Waveforms

2

CHAPTER 6: An Automated Digital Sound Synthesis Instrument

Standard vs Non-standard Synthesis

The Program Generator

The Grammars and Semantic Constraints

The performance of Functions

The Context of Functions

CHAPTER 7: The System Configuration - An Implementation

The GGDL Programs

Inspecting Compositions

The System Configuration

Message Compilation and Transmission

CHAPTER 8: Conclusions and Further Research

Directions for Further Research

APPENDIX 1: The High-Level Language Facilities of GGDL

APPENDIX 2: Example GGDL Programs

APPENDIX 3: A Grammar for Generating Non-Standard Sound

Synthesis 'Functions'

APPENDIX 4: Using the GGDL-CAC System

3

CHAPTER 1: Introduction

At present, the application of computers in music has focused

almost exclusively on sound synthesis. Research in computer music

has mostly been concerned - with the development of hardWare and

software models for the synthesis of sound and the description

of instrumental and instrumental—like timbres using these

models.
2 The application of computers in the process of music

composition, that is, the generation of sound structures, has, for

the most part, been neglected. With the exception of the work of

a few composers, notably lannis Xenakis and G. H. Koenig, this

area of computer music research remains largely unexplored.

This is possibly due to the greater subtlety of the problem.

Whereas in synthesis, the machine is used as a powerful calculator

using algorithms based on formal acoustic theory which are

explicit and straight—forwardly programmed; for composition it is

a great problem even to formalise the rules of a music language.

Indeed, though composers 6f very different compositional technique

can describe instruments to perform their music using the same

acoustic model, such as the widely used frequency modulation

synthesis model, each would require the formalisation of different

composition languages to use a computer as an aid for composition

For example, Fourier synthesis, Frequency Modulation Synthesis
(Chowning 1973), Vosim synthesis (Kaegi 1978).

Research in synthesising instrumental timbres includes J. C.
Risset's (1966, 1968) extensive work using frequency modulation
synthesis, J. Beauchamp's (1979) and D. Morrill's (1975) synthesis
of trumpet timbres, and J. Gray's (1975) 'exploration of musical
timbre'

4

in their style. 	Programs for sound synthesis, such as Mathews'

(1969) MUSIC V, have been widely implemented and are used by many

composers, though to date, computer programs for music composition

have been designed by individual composers to compose in their

particular style or music language. A composer interested in

computer composition has been required to design and implement

what would most likely be a large and sophisticated software

package in order to use a computer as an aid in the process of

composition.

An Aid for the Generation of Music Structures

This thesis describes a computer software system designed to

usefully aid composers in the process of music composition by

automating part of the composition process. Recent years have

seen the development of software systems to aid designers, ie.

computer aided design (CAD) systems, in a variety of disciplines -

eg. architecture, electronic circuit layout, VLSI design. Like a

CAD system, a "CÁO" (Computer Aided Composition) system should act

as a tool to facilitate the 'design' of large music structures.

Just as a CAD system may permit the definition of building blocks,

such as 'cells' for VLSI, and provide facilities for defining

structures built from these blocks, a CAC system should permit the

definition of a variety of musical building blocks and provide

facilities for the construction of larger structures from these

minimal music units. These facilities should, of course, be

designed around the types of structures that are likely to be

defined when composing music.

.1

In trying to determine whether computers can be a useful aid to

composers for composing music, it is first necessary to consider

what functions a computer might usefully perform to help a

composer. 	Since the turn of the century there has been an

increasing formalisation of the composition process. 	This was,

for example, manifest in serialism and the music of the Viennese

school - Schoenberg, Berg and Webern. In the post—war era, the

most significant influence on young European composers was

certainly that of the serialist movement, and, in particular, the

ideas of Anton Webern (Die Reihe 1955). In the Cologne school

(Stockhausen, Koenig, Kagel, Ligeti) of composition in the '505,

much of the composition process had become a process of applying

explicitly defined and well formalised rules, the rules of

serialisn, to the generation and manipulation of music structures.

It was perhaps in some of the serial music of the French composer

Pierre Boulez that explicit definition and deterministic control

of the composition process reached its culmination, eg. "Structure

1A" (Boulez 1955). 	This trend towards formalisation is also

apparent in the music of lannis Xenakis. 	Xenakis rejected

serialism arguing that the correspondance between the rules of

serial composition and the compositions generated was inaudible,

from which he concluded that serial technique was invalid (Xenakis

1955). As an alternative, Xenakis formulated other rules for the

generation of music structures. These rules, which he called

'stochastic composition rules' (Xenakis 1971, 1971b) were equally

explicit and formalised.

The significant point to be taken for the design of a CAC

system is that, for many contemporary composers at least, the

process of music composition can be formalised and explicitly

defined. A computer scientist might be led to conclude that if

the rules of the composition process can be sufficiently

formalised, then part of the composition process can be programmed

and automated.

Looking more closely at these formalised processes of

composing, they are processes in which composers are defining the

syntactic rules of a music language and then generating music

structures by applying these syntactic structuring rules. A

composer may possibly apply these rules a large number of times to

generate complex structures. A useful aid to composers would be

to automate the laborious process of applying these syntactic

structuring rules to generate compositions. The process of

composition then becomes one of defining a set of compositional

rules which the computer then automatically applies to generate

compositions. The role of the composer becomes that of

'selector': he selects and defines a music language, and then may

select from among the structures generated from that language

definition

In fact, during the past 25 years, a number of composers have

programmed compositional rules to automate their composition

process. Perhaps the first composition realised in this manner

was L. Hiller's (1957) "Illiac Suite for string quartet", using

random composition procedures programmed on an Illiac computer.

Since 1962, Xenakis has used composing programs based on his

7

stochastic composition principles to compose a number of pieces

(Xenakis 1971). Also notable,. G. ti. Koenig has, since 1963,

developed composing programs based on his compositional ideas

(Koenig 1970, 1970b).

These composition systems are systems where a specific set of

rules has been programmed and the process of composition in a

specific language has been automated. However, the rules

available are limited and it is unlikely that more than a few

composers will be able to share such a specific set of rules for

composition. Each composer using such an automated system will

most likely want to specify different types of rules.

This thesis describes a flexible CAC system designed to

automate part of the composition process. The system has been

designed to permit the specification of a large number of

different types of compositional rules. Unlike other programs

that have been designed to automate the composition process, this

is the first system which provides a powerful facility for a

composer to define an arbitrary set of compositional rules which

can then be used as the basis for automatic composition. A

composer may define an arbitrary compositional language, and the

computer will then automatically generate utterances in the

defined language.

Generative Grammars and Automated Composition

The composition system described in this thesis uses generative

grammars (Chomsky 1957) to automate the generation of music -

structures. An obvious basis for a general rule based system for

language generation is grammars. However, though it is fairly

clear that generative grammars may be used for the generation of

(at least some types of) music, it is not obvious that using

generative grammars for the generation of music might be helpful

to composers. With reference to results derived by implementing a.

CAC system based on generative grammars, it is shown in this

thesis that generative grammars can be a useful aid to composers

in the composition process. In addition to being an aid to

composers, it is proposed that such a system could be a valuable

aid for musicological and Artificial Intelligence research

concerned with the representation and modelling of composition

processes.

The formal description of musical processes has been a part of

music theory for centuries. More recently the use of grammars for

the purpose of music analysis is found in the work of Ruwet

(1972), Nattiez (1975), Laske (1972,1973), Winograd (1968) and

others. A survey of grammars applied to music studies may be

found in Roads (1979) However, though a number of composers have

automated their composition processes by programming their

compositional rules, the composition system described in this

thesis is the first implemented system to use grammars for the

generation of music structures.

The basis of the CAC system described in this thesis is the

Generative Grammar Definition Language (GGDL) compiler. GGDL is a

language with which one can formally define the components of a

generative grammar with sufficient explicitness that the

definition may be used to drive a mechanism which will generate

automatically utterances in the language. A formal specification

of GGDL was begun in 1977, and prototype composing systems using

generative grammars were implemented for designing the 'automated

non—standard digital sound synthesis instrument' (Holtzman 1978b,

1979) and for the composition of an electronic composition, 'After

Artuad' (Holtzman 1978,1978c). In an independent manner, a

language similar to GGDL was proposed by C. Roads (1978).

However, his 'Tree' is a considerably less powerful than GGDL and

has never been implemented.

The basis of GGDL is linguistic. Much work has been done in

the field of linguistics for formally representing language

processes. This is not to say that the rules one actually defines

to describe a music language will be similar to those which might

describe some other natural or formal language; rather, linguistic

experience with representing language processes is exploited to

provide a versatile 'language definition language' The

linguistic facilities for representing language rules, ie.

grammars, by rewrite or production rules has been enhanced with

certain features which are especially convenient for describing

common composition processes. It may still be the case that it is

extremely difficult to represent certain types of composition

processes with the rules provided.

10

Though GGDL is particularly designed for defining grammars of

musical languages as an aid to the composition process, because

music is approached as a formal system of relationships between

sound objects (Holtzman 1978) GGDL would also be suitable for

defining other 'structural' or formal languages. For example, .a

set of phonological rules could be defined to produce appropriate

phonetic data for a speech synthesiser.

The GGDL-CAC System

At an extremely general level, one could perhaps say that, in

the process of composition, most composers generate some sort of

working material, fragments of a musical structure, and then

evaluate them, rework then and build larger musical structures

from these smaller components. A computer system to aid a

composer in this process may help with the generation of musical

structures, as this thesis proposes the GGDL grammar system may

do; but also should facilitate the evaluation of generated

structures. For composers to actually use such a system it would

need to be interactive and, ideally, allow the material generated

using the system to be quickly and easily evaluated, for example,

as sound or in the form of a score.

The generative grammar system, therefore, should be seen as one

part of a suite of programs to aid a composer. Generating

structures, other programs might, for example, permit the easy

inspection of the results. Programs for synthesis, score editors

(Smith 1972, Buxton, et al, 1979), and so on, could complete the

11.

suite. The GGDL composition system implemented at Edinburgh has

been integrated with programs to enable sound synthesis and the

graphic editing of music structures. The complete suite of

programs, referred to as the GGDL-CAC system, has been implemented

on a network of computers; a VAX 11/780 supports the GGDL

composition software for the generation of music structures and a

graphic editor, and a PDP-15/40 equipped with the appropriate

hardware is used for the performance, ie. synthesis, of music

structures.

In addition to integrating the GGDL composition software with

other composition aids in the implementation described in this

thesis, the GGDL composition software system has been designed in

such a way as to permit a flexible interface with other programs.

A mapping process in the act of generating compositions permits

the definition of an output in an arbitrary format independent of

the actual generation of a composition's structure. Thus, given a

set of compositional rules, one can generate output compatible

with different synthesisers, score editors or other alpha-numeric

representations of the score.

Composition with the GGDL-CAC System

Results obtained using the implementation of the GGDL-CAC

system demonstrate that generative grammars can usefully automate

the composition process to aid composers. The GGDL-CAC system has

been used by several composers to generate music structures.

Notably, D. Hamilton used the system over a period of two months

.lr

to realise a BBC commission, and C. M. Koenig experimented with

GGDL to help him conclude whether grammars could be a useful way

of automating the composition process. The author of this thesis

also has used the GGDL-CAC system for the generation of a number

of music compositions.

In addition to demonstrating that the system can be used to

generate 'macro-compositions', it is shown that the system can be

used to automate the composition of 'micro-sound structures'. By

macro-composition is meant the generation of sound structures

described in terms of complex sound-objects, such as notes or

noises. By the composition of micro-sound structures is meant the

description of sound structures in terms of the minimal units of a

sound description, such as samples or synthesis parameters. The

objects manipulated when composing at the micro-level are not

themselves sounds, but, when used to form a complex structure of

such objects, may define a sound. The generation of macro-music

structures such as those discussed in Chapter 4 is, in a sense,

what one would expect, or what one might minimally want from a

composing program. In Chapter 5, it is shown that using GGDL, a

composer, as he may define the objects he wishes to compose with,

may use the system with equal facility to compose at the

micro-level.

Though Koenig and Xenakis have experimented with using their

composition principles to organise micro-sound structures, they

designed their programs in such a way that it was necessary to

write different composing programs to apply the same rules to

13

different objects. Applying computer science design principles of

modularity and exploiting concepts developed in generative

linguistics, GGDL is designed to permit the definition of
/

compositional rules independent of the objects that are to be used

to realise structures generated with the defined rules. The

flexibility of GGDL permits a composer to define not only an

arbitrary set of compositional rules, but also an arbitrary set of

elements to be composed with. No other composing programs permit

such flexibility. The advantages of such flexibility are

demonstrated in the examples of Chapters Il and 5.

The thesis also describes what is called the 'automated

non—standard digital sound synthesis instrument' (Holtzman 1978b).

This instrument is the basis for an innovative approach to digital

sound synthesis and the composition of sounds and was developed as

a direct consequence of using generative grammars to automate the

composition process. It demonstrates that the use of generative

grammars and an automated CAC system may, in addition to

facilitating composers in the composition process, open new

possibilities in composition that could not have been arrived at

without such a system.

Summer

In summary, this thesis investigates whether it is possible to

automate parts of the composition process to usefully aid

composers. It is suggested that generative grammars could be used

14

to automate the process of the generation of music structures.

However, though it is clear that music may be generated with

grammars, it is not obvious that generative grammars will be able

to usefully aid composers. A computer aided composition system

based on generative grammars was designed and implemented to

investigate if, in fact, generative grammars could usefully aid

composers by automating part of the composition process. In

addition to the automatic composing system, the system includes a

suite of programs to permit the inspection and evaluation of

generated music structures. Presenting results obtained using the

system, it is shown that generative grammars can usefully aid

composers by automating part of the composition process.

The thesis begins with a review of research work concerned with

computer composition. The basis of the CAC system described in

this thesis, that is, the GGDL programming language, is then

described.

The thesis presents and evaluates some of the practical results

obtained using the QGDL computer aided composition system. 	In

Chapter k, Steve Reich's 'Clapping Music' (Reich 1972),

Schoenberg's TRIO from the Piano Suite, Op. 25 (Schoenberg 1925),

and David Hamilton's 'Four Canons' are used to demonstrate how

GGDL might be used for describing and generating complex

compositions. Though these examples demonstrate the considerable

power of GGDL and the possible sophistication of results, these

sort of results are, in a sense, what one would expect from a CAC

system. However, the facility in GGDL to define arbitrary

compositional objects makes it equally possible to compose

micro-sound structures and examples of composing sounds are

presented in Chapter 5. In addition, using GGDL and concepts

developed for composing with such a system, eg. conceiving of

music as a hierarchical system which may be described in terms of

formal relationships between objects, an innovative approach to

digital sound synthesis and the composition of sounds was

developed in what is called an 'automated non-standard digital

synthesis instrument' • This 'automated instrument' is described

in Chapter 6. It is perhaps these new possibilities that will be

of most interest in computer aided composition.

These examples of using generative grammars for the description

and generation of music compositions are followed in Chapter 7

with a description of the implementation of the GOOL-CAC system.

In Chapter 8, the conclusions that may be drawn from the research

reported in this thesis are discussed and possible directions for

further work considered.

16

CHAPTER 2: Review of the Literature

In this chapter, related work in automating the composition

process is discussed. In particular the composition programs of

lannis Xenakis and G. M. Koenig are described and compared to the

GGDL composition system. A language similar to GGDL proposed by

C. Roads is also discussed. Roads independently proposed using

grammars for describing and automating the composition process.

It is shown that the CAC system described in this system provides

a facility which is not available in any other CAC systems, by

which a composer may automate the composition process. The

approach described in this thesis to the problem in terms of

generative grammars is also shown to be original.

"Computer Aided Composition"

11. Buxton's (1977) paper, "A Composer's Introduction to

Computer Music", surveys computer music. Apart from synthesis

programs, he discusses what he calls 'composing programs' and

'computer-aided composition programs'. As examples of the former,

he refers to programs developed by Hiller (1959), Xenakis (1971)

and Koenig (1971,1971b). 	The brevity of the list indicates how

little research has been done in automated composition. 	Buxton

refers to several programs as computer-aided composition programs:

Score (Smith 1972), Musicomp (Tanner 1972), Groove (Mathews et al

1970), and the POD programs (Truax 1973). Buxton's (Buxton et al

1978) more recent Structured Sound Synthesis Project would also

belong to the category of 'computer aided composition programs'.

17

These programs are essentially score editing systems that permit

composers to define, edit and manipulate representations of music

structures and, in most cases, listen to and possibly view the

results.

In this thesis, 'computer-aided composition' (CAC) is used to

refer to any facilities which may aid a composer in the process of

composition. CAC facilities therefore are understood to include

both 'composing programs' and 'computer-aided composition

programs' as distinguished by Buxton. Both aid composers in the

process of composition. It is felt, rather, that the fundamental

difference between these two types of programs is that 'composing

programs' are automated compositional aids, and that Score,

?lusicomp, etc. are non-automated compositional aids.

Another difference between these two types of programs in the

case of the programs cited by Buxton, is that the 'composing

programs' have been designed by individual composers primarily as

aids to themselves for composing in their particular styles,

whilst the various music editing programs are intended as general

facilities to aid composers of possibly very different

compositional method and style. However, this distinction is not

a necessary difference. It just so happens that none of the

automated compositional aids have been designed for general

application. The GGDL-CAC system fills this gap. It is an

automated compositional aid intended for general use.

18

Hiller' 5 "Illiac Suite"

In 1957 Hiller composed the "Illiac Suite" for string quartet,

using data generated by an Illiac computer (Hiller 1959). To

generate the data, Hiller programmed the machine to generate

randomly distributed notes and durations. In 1963, Hiller and

Robert Baker developed a number of composition routines which

formed the basis of Musicanp (Hiller 1969). Hiller has used such

composing routines to write several pieces since the "Illiac

Suite". These routines are mostly based on 'stochastic' processes

which are embodied in the composition techniques of lannis

Xenakis.

The ST—programs of lannis Xenakis

In 1954 Xenakis originated what he called 'stochastic music',

music composed by means of formalised composition techniques

'largely based on mathematics and especially the theory of

probability' (Xenakis 1971). Using such techniques, musical

'textures' are described by probability distributions of 'sonic

events'. For example, 'the composition of the orchestra could be

stochastically conceived ... during a sequence of a given duration

it may happen that we have 80% pizzicati, 10% percussion, 7%

keyboard, and 3% flute class' (Xenakis 1971). Stochastic

techniques could also be used to generate a number of pitches over

a range of frequencies with a given probability distribution,

durations could be distributed over time, and so on.

19

Xenakis has composed many pieces using such techniques. In one

of his early stochastic compositions, "Synños" (Xenakis 1959),

Xenakis described eight different textures in terms of probability

distributions. Written for string orchestra, these textures were,

for example, descending bowed glissandi, pizzicato clouds, and

'atmospheres' made up of notes struck col legno. In his

compositions, Xenakis calls these textures 'screens' and uses

Markov chains to describe transition probabilities from one screen

to another. A matrix defining the transition probabilities

between eight textures is given in Figure 2-1

Xenakis programmed his rules in a series of programs known as

the 'ST', ie. STochastic, programs. However, his formalised

composition techniques and the use of mathematics in the process

of composition were not a consequence of computers.

"Computers are not really responsible for the introduction
of mathematics into music; rather it.. is mathematics that
makes use of the computer in composition.. .the advantages of
using electronic computers in musical composition (are) 1)
the long laborious calculation by hand is reduced to nothing
2) freed from tedious calculations the composer is able to
devote himself to the general problems that the new musical
form (ie. that described by a set of rules) poses and to
explore the nooks and crannies of this form while modifying
the values of the input data" (Xenakis 1971).

Xenakis also suggested that, using computers, techniques used

to compose macro-compositions could also be applied to the

composition of micro-sound structures. To investigate this, he

implemented a program to calculate waveforms using stochastic

techniques.

"Solutions in macro-composition can engender simpler and
more powerful new perspectives in the shaping of
micro-sounds than the usual trigonometric (periodic)

20

A B C D E F 0 H

A 0.021 0.357 0.084 0.189 0.165 0.204 0.408 0.096

B 0.084 0.089 0.076 0.126 0.150 0.136 0.072 0.144

C 0.084 0.323 0.021 0.126 0.150 0.036 0.272 0.144

D 0.336 0.081 0.019 0.084 0.135 0.024 0.048 0.216

E 0.019 0.063 0.336 0.171 0.110 0.306 0.120 0.064

F 0.076 0.016 0.304 0.114 0.100 0.204 0.018 0.096

O 0.076 0.057 0.084 0.114 0.100 0.054 0.068 0.096

H 0.304 0.014 0.076 0.076 0.090 0.036 0.012 0.144

Figure 2-1: 	A Xena]cis 'matrix of transition prcbabilities (P)'
(Xenakis 1971 p. 89). Eight 'screens', each with a
transition row, are represented by A,B,C,D,E,F,G,H.

21

functions can. Therefore, in considering, clouds of points
and their distribution over a pressure—time plane, we can
bypass the heavy harmonic analyses and syntheses and create
sounds that have never before existed. Only then will sound
synthesis by computers and digital—to—analogue converters
find its true position" (Xenakis 1971).

The Composition Programs of G. M. Koenig

Koenig was, in the 50's, a leading member of the Cologne school

of composition. It was during this time that Koenig formulated

the concept of what he was later to refer to as 'programmed

music' • influenced by the serial and formal composition techniques

that were then prevalent. Koenig explains programmed music as

music composed by following a set of formal and explicit

instructions (Koenig 1971, 1978). The process of composition

consists of defining a set of compositional rules and then

applying the rules to generate a composition. The realisation of

a composition, given a set of compositional rules, could be done

by anyone, or anything, capable of following the 'formalised

instructions.

The 'programme' by which a work is composed is not necessarily

a computer program. For example, the score for his composition,

"Essay, composition for electronic sounds" (Koenig 1960) written

in 1957, is a 'programme'. It consists of all the instructions

required to realise the composition. What is to be recorded, what

length tapes should be cut, how they should be ordered, and so on.

Given the programme, anyone could follow the instructions to

realise the composition.

c
rr c

It was not until some years after Koenig formulated the idea of

programmed music that he began research into programming

compositional rules. It was in fact his idea of programmed music

that led him to using computers.

"Between 1957 and 1963 I composed as well as electronic
pieces two piano pieces, a wind quintet, a string quartet
and three orchestral pieces, applying composing methods
which could one and all have been performed with the aid of
a computer" (Koenig 1978).

Koenig's interest in developing composition programs is not

only to generate compositions, but to 	1) study the process of

composition by trying to formalise and program it 	2) study the

consequences of 'programmed music'. Koenig has been interested in

making a systematic study of 'form-potential'. Compositional

rules define formal relationships which may be realised in music;

these possible realisations are what Koenig calls a

'form-potential'. In terms of grammatical description, it is

suggested that the 'form-potential' of a set of rules could be

likened to the 'language' defined by a grammar.

Koenig has written three composition programs, 'Project 1'

(Koenig 1970), 'Project 2' (Koenig 1970b), and the '3SF' (Berg

1978, Berg et al 1979) sound synthesis program. The earliest of

his three composing programs was 'Project 1'.

"I had the idea of collating my experience with programmed
music at the desk and in the electronic studio to form a
model which would be almost fully automatic. Faithful to
the fundamentals of the nineteen-fifties, all the parameters
involved were supposed to have at least one common
characteristic; for this I chose the pair of terms
'regular/irregular'. 'Regular' means here that a selected
parameter value is frequently repeated: this results in
groups with similar rhythms, octave registers or loudness,
similar harmonic structure or similar sonorities.

23

'Irregularity' means that a selected parameter value cannot L

be repeated until all or at ipast many values of this
parameter have had a turn. The choice of parameter values
and group quantities was left to chance, as was the question
of the place a given parameter should occupy in the range
between regularity and irregularity. A composer using this
program only has to fix metronome tempi, rhythmic values and
the length of the composition.. .all details are generated by
the automism of the program " (Koenig 1978).

'Project 1' was designed as a means of investigating periodicity

(regularity) and aperiodicity (irregularity) in music structure.

Whereas 'Project 1' offers a composer little opportunity to

influence the structures generated by the composing program,

'Project 2' permits a composer to influence the way in which

structures are generated.

"On the one hand, the user is expected to supply a lot of
input data not only defining the value—ranges in eight
parameters but also making the parameters interdependent; on
the other hand, the individual decisions within the
form—sections (that the program generates) are not made to
depend on chance, as in Project 1, but on selection
mechanisms specified by the composer" (Koenig 1970b).

In 'Project 2 1 , Koenig defined five selection mechanisms, or

procedures, each based on a selection principle. The user could

not actually define selection procedures, but could specify which

selection procedures and what parameters would be used for

selections.

The five selection procedures in the 'Project 2' program are

'alea' , 'series', 'ratio', 'tendency', and - 'group'. These

selection procedures permit the selection of elements from a

defined set according to specified rules. 'Alea' does this

randomly; 'Series' does this ensuring that no element is selected

a second time until all other possible selections have been chosen

24

at least once, in accordance with the traditional serial selection

principle; 'ratio' uses a specified weighting for each element to

bias its selection; 'tendency' permits the specification of a

dynamic mask over the elements; 'group' selects an element from

the specified set and then repeats that selection a specified

number of times.

In 1963, Koenig suggested that "the question arises as to how

instrumental experience in macro-time could be transferred to

micro-time" (Koenig 1963). Serial composers producing electronic

music in Cologne wanted to unify the macrostructure of a

composition with the microstructure of the sound(s) from which it

was composed. The same principles should produce both. This was

the basis, for example, of Koenig's (1960) "Essay". The sounds do

not result from a preconceived acoustic idea but rather from

serial manipulation of basic material specified in accordance with

the overall form of the piece.

Koenig therefore designed a computer sound synthesis program

(5SF) (Berg 1979) that permits the application of his 'selection

principles' to manipulate samples. Samples may be organised to

form 'segments', and, in turn, using the same selection

principles, these segments may be manipulated to form larger sound

structures.

25

Grammars and automatic composit

Both Xenakis and Koenig turned to computers as an aid in the

composition process. The computer programs they designed to

automate part of their composition process were designed around

particular concepts of music composition. Neither the ST—programs

nor Koenig's programs permit a user to define his own

compositional rules. In the ST—programs, variables can be changed

by a composer to alter the probability distribution of components

of a sound texture. In Koenig's 'Project 1', a composer has

little control over the output that the program will generate

though, in 'Project 2' and the 'SSP' program, the composer can

program the generation of utterances using a limited virtual

machine instruction repetoire.

The CAC system described in this thesis is designed to automate

the generation of musical structures whilst permitting a composer

to specify his own compositional rules. This is the first system

which provides a specially designed facility, the Generative

Grammar Definition Language, for a composer to define an arbitrary

set of compositional rules which can then be used as the basis for

automatic composition. The basis of the 'language definition

language' is the 'rewrite rule' (cf. 3.1.1), a concise method of

describing language constructs that has been widely used in

linguistics and formal language research. Rewrite rules with

various properties may be used to describe different types of

languages.

26

Language systems using rewrite rules (or similar formalisms

such as Backaus-Naur Form (BNF)) and implemented on computers have

been designed for the purpose of defining the syntax of a language

and have also been used for recognising, or parsing, language

constructs. In certain respects, when implemented, language

generation poses problems that are not encountered in parsing.

For example, a problem in generation not encountered in parsing is

how, given a number of possible alternatives that may be

generated, selection between them is to be made. That is to say,

in parsing, the right-hand side alternative which actually matches

the string being parsed, is determined by the string; in

generation, one of the possible right-hand alternatives must be

selected by the generative mechanism.

In 	Xenakis' 	ST-programs, 	the matrices 	of transition

probabilities and probability distributions, and in Koenig's

programs, the selection procedures, are used to select one element

from a number of possible selections at any given time. The GGDL

automatic composition system provides some system procedures

similar to those available in the ST-programs (cf. Finite-State

Rewrite Rules, 3.1.213) and 'Project 2' and '55?' (of. 'Blocked

Generation', 3.1.212). These system procedures are provided

because they are widely used selection techniques in music

composition. However, it is not possible to predict all the

selection procedures that composers may wish to use. Therefore,

in addition to permitting a composer to specify the syntax of a

compositional language in the form of rewrite rules, a simple

high-level programming language is provided with which a composer

27

may specify his own selection procedures. 	These selection

procedures may then easily be integrated into the rewrite rule

specification of the syntax of a compositional language.

Though grammars have recently been used for music analysis,

their use for the specification of generative mechanisms for

composition has not been explored. The CAC system described in

this thesis is the first implemented system to use grammars as the

basis for specifying mechanisms for the generation of music

structures. However, at the same time as the GGDL language was

specified, C. Roads independently described a language called

'Tree', also based on grammars, for the specification of

generative mechanisms for music.

In 'Composing Grammars' , Roads (1978) suggests that grammars

could be a useful way of specifying the syntax of a music

language.

"If it is the task of one kind of composition to structure
the syntax of a lexicon of sound objects, it is natural to
think of clarifying and extending this process by means of a
notation system and with the aid of a computer program. The
structure of music expressions, and of the grammar behind
them, can be described by means of concepts and notation
developed in formal language theory."

After a discussion of the use of grammars in music analysis, Roads

proposes a language for the specification of a music language that

may then be used for the generation of compositions. He proposes

that the language should permit the specification of syntax using

context—free rewrite rules. He also suggests that the rewrite

rules should permit the specification of more than one right—hand

side production for a given left—hand side and that a 'control

C
C,

procedure' could arbitrate between the alternatives available.

Such a control procedure, he suggests, could be written in a

high-level language.

Though Roads' 'Tree' shares a number of features in common with

GGDL, for example, the use of rewrite rules and selection or

'control' procedures; 'Tree' is considerably less powerful than

GGDL and has not been implemented. In addition to context-free

rewrite rules, GGDL also permits the use of context-sensitive

rewrite rules and includes a transformational processing stage in

generation (ie. properties associated with Type 1 and Free

Grammars). It is, however, with reference to 'control' procedures

that Roads' specification is extremely vague, which is probably

due to the fact that 'Tree' remains an unimplemented language.

Though Roads suggests that 'control' procedures could arbitrate

between alternative choices, he does not clearly specify how this

is to be done. GGDL, in addition to providing system procedures

for selecting between alternatives, permits the definition of

functions in a high-level programming language. During the

process of rewriting a function may be called and the result it

returns may be used as an index to the possible selections.

Other limitations of Xenakis' and Koenig's programs are that

the objects composed with in the programs, and the format in which

output is generated, are fixed. Though both Xenakis and Koenig

have experimented in applying their compositional techniques for

generating micro-sound structures, in both cases composed of

samples, they have had to design new programs for this purpose as,

29

in their implementations, the process of structure generation and

the objects in terms of which the structure is defined are closely

dependent on one another. GGDL is designed to permit the

definition of compositional rules independent of the objects that

are used to realise structures generated with the defined rules.

This approach is based on a distinction made in generative

linguistics between the generation of abstract structures and

their mapping or morphological realisation. Thus, in the GGDL

generation process, there is a structure generation process and a

mapping process. There is also an intermediate transformational

process. Similarly, Roads, in his description of 'Tree', proposes

a distinct 'lexical mapping' stage. However, whereas with GGDL it

is possible to generate a structure and then use different mapping

definitions to map the same structure to different formats using

different mapping definitions, it is not clear in Roads'

description of 'Tree' whether one can actually separate these

processes in such a manner. Nor does Roads' 'Tree' ,include a

Transformational processing stage.

Summary

In summary, automatic composition programs have been designed

around predefined compositional rules and have thereby been

limited in their generality. They have also been defined in terms

of a specified compositional object - ie. notes or samples. GGDL

is a system which permits the specification of composition rules

and may therefore be used as a compositional aid with more general

application. Furthermore, by introducing modularity into the

0

generative design, GGDL may be used to generate structures

independent of how they are to be realised. That is, the

compositional object and the process of composition may be

specified independently permitting the same compositional rules to

be used to compose with different objects, or, vice—versa, the

same objects to be used with different compositional rules. The

GGDL—CAC facility described in this thesis provides facilities

that may be used by a composer to automate, and thereby aid him

in, the process of composition.

31

Chapter 3: The GGDL Generative Grammar Definition Language

A problem common to both the composer wishing to automate part

of his composition process and the researcher wishing to

investigate a composition process is to formally and explicitly

represent that process. In this chapter, the use of grammars for

the description of composition processes is discussed. In

particular, the facilities available in the GGDL generative

grammar definition language for defining a grammar are described.

GGDL may be used to define a Transformation Grammar with three

components: a set of phrase—structure rules, a transformational

component and a morphological mapping component. In the second

part of this chapter, the formalism of the rewrite rule is defined

and the types of grammars that may be described using rewrite

rules with different properties are reviewed; the transformations

available, and lastly, the process of morphological mapping, are

described.

Generative Grammars

A grammar gives rules for combining the elements of a language,

such as, notes, words, or noises, to form utterances (or

sentences) in the language. A 'generative grammar', introduced by

Chomsky (1957), is a system of explicit and formal rules with an

associated lexicon. These rules are formulated in such a way that

they may generate a set of sentences, that is, combinations of the

lexical elements, which constitute a language. The language

32

defined by a set of rules consists of all the combinations of the

elements that the rules can produce and only those combinations,

though this is not necessarily a finite number.

GGDL is a language with which one can formally define the

components of a generative grammar with sufficient explicitness

that the definition may be used to drive a mechanism which will

automatically generate utterances in the language.

A Transformational Grammar

A grammar may consist of a number of components. In GGDL one

may define a special type of grammar, a Transformational Grammar,

which consists of a set of Phrase-Structure Rules, a set of

Transformational Rules, and a set of Morphological Rules. Phrase

Structure Rules generate sequences of terminals (cf. 3.1-13) which

are the names of morphemes; Transformation Rules may manipulate

these morpheme strings based on special characters in the string

which initiate structural changes - these may be called

"Structural Change Markers"; Morphological Rules map the

surface-structure of the morphemes, generated by the

Phrase-Structure and Transformational Rules, into sound or

possibly some other representation.

In GGDL one can define an arbitrary set of Phrase-Structure

Rules, a set of Transformation Rules are provided by the system,

and an arbitrary set of Morphological Rules may be defined.

1) It is interesting to note that, *hereás for spoken language

33

Describing Music Languages with Grammars

A traditional music score is a representation of a collection

of utterances in a musical language. The language theoretically

could be formally described by a set of rules. Typically, the

grammar by which a musical structure is derived in the process of

composition is not easily, and certainly not completely,

detectable - it is oblique but may be inferred. When confronted

with a machine, all of the processes involved in composition must

be made explicit and be unambiguously represented. Anything left

unsaid will not be taken for granted by the generator program. A

composer must make explicit:

"a knowledge needed for producing syntactically well-formed,
semantically interpretable, and sonically intelligible
structures.. .rules of the syntactic component concern the
grammatical well-formedness of musical structures, rules of
the semantic component determine the interpretations
associable with well-formed musical strings; sonological
rules, together with universal sonic constraints, determine
the relationship between the syntactic-semantic structure of
a music and its acoustical representation in as far as this
relationship is controlled by grammatical rules" (Laske
1973).

GGDL. is a language that may be used to tonally represent this

'knowledge'. That is, in GGDL, one can formally and explicitly

represent the syntax of a language to generate 'well-formed'

musical structures; one can also define functions to control which

the transformational rules are different for different languages
and the phrase-structure rules may possibly be common, for
different music languages it is suggested that the same
transformations may be used though the phrase-structure rules will
differ. The musical transformations available in the
transformational stage of generation in GGDL, such as inversion,
retrograde and transposition, have been exploited by composers of
very different music languages: Machaut, Bach, Beethoven, Bartok,
Schoenberg, Messaien, Stockhausen, for example.

34

well-formed structures are generated, ensuring that they are not

simply grammatically correct but are musically understandable to

the composer; and one can formally define the relationship between

the abstract representation of a structure and its realisation in

a set of 'mapping rules'.

Using GGDL the generation process is divided into three

distinct stages. First an abstract structure is generated

representing relationships between musical objects. This process

consists of the generation of utterances in a language where the

language syntax is defined by rewrite rules (cf. 3.1.1) and

selection procedures control the process of rewriting. In GGDL, a

generative grammar definition program may define an arbitrary set

of phrase-structure rules at two levels, a syntactic and a control

level.

Second, given a structure generated by such rules, it then

undergoes a transformation process. In this process, special

characters in the generated string indicate that certain

structural transformations should occur. These transformations

are predefined in GGDL. The transformational process results in a

string which should, at this stage of generation, consist only of

terminal strings, though this is still an abstract representation

of the music structure.

Third, the abstract structure is 'mapped' into a 'concrete'

musical representation, such as sound or a score. This process

may also be defined formally in a mapping program which consists

35

of instructions for mapping abstrAd objects to real ones.

The division of the generative process into these three stages

was somewhat arbitrary. Experience in computer science has shown

that such modularity, the basis of structured programming (Dahl.

1972), facilitates the formalisation of programs. However, though

it has been suggested that these three stages provide a useful way

of modularising the process of the generation of natural

languages, it is not obvious that such a division will be a useful

one for the generation of music structures. This is especially so

when one considers that the phrase structure rules of natural and

music languages may be very different and that the notion of

transformations in music is very different from that in natural

language!.

It is suggested that such a division Of the generation process

for music is, in fact, a useful way of modularising the process.

For example, the notion of transformations in music structures is

a familiar one, viz, transposition, inversion, retrograde.

Furthermore, evidence from previous research in automated computer

composition, ie. the programs of Xenakis and Koenig, suggested

that it might be advantageous to separate the process of structure

generation using a set of rules from the definition of the objects

of that structure. Whereas in the work of Xenakis and Koenig,

different programs were developed to apply the same rules to

different compositional objects, a separation of the generation of

a structure from the definition of the objects used to define it

would enable one to change only one module of a language

36

definition without influencing other modules.

In trying to investigate whether generative grammars could be

of aid to composers, it was necessary to choose a specific

implementation of a generative grammar, and, using that

implementation, make an assessment. Though the choice of the type

of grammar to use was somewhat arbitrary, it is felt that there

were reasonable grounds to suggest that the division of the

generation process into the three distinct stages used would be

useful and results gathered using such an implementation,

presented in Chapters 45, support the conclusion that such a

division would prove a useful one.

The phrase—structure rules of a grammatical description of a

language may be thought of as manipulating only abstract objects.

Objects are related only one to another (see Holtnnan 1978) and

are undefined except to the extent that they are related to each

other. What the objects actually are, or will be, when they are

mapped into, for example, sounds is completely arbitrary. The

processes of structural generation and the structure's realisation

are independent.

In approaching a grammatical system, the rules of the grammar

may be thought of as working on two orthogonal axes which describe

two different types of relationships amongst the abstract tokens

which the grammar manipulates (see Figure 3-1). The relationships

on one axis are known as ' syntagmatic' , with the other the

relationships are 'paradigmatic'. J. Lyons explains that a

37

root

fon
mao level sernarr

iritenrediate level

fornal s'

•1
gone.

sound objects. 4 	I

nal
tics

intax

I..

paradigmatic axis

syntagnatic axis

Figure 3-1: Paradigmatic and syntaginatic relations ancngst the
objects of a structure. 	(After C. Pcads (1978))

WEA

linguistic unit

••• .enters into paradigmatic relations with all the units
which can also occur in the same context; and it enters into
syntagmatic relations with the other units of the same level
with which it occurs and which constitute its context"
(Lyons 1968).

Syntagmatic relations have to do with the relations of tokens at

any one level in a structure; they are the result of combinations

of tokens on the same level. Paradigmatic relations occur when

tokens may be substituted for one another and still perform the

same function in the system as a whole. Paradigmatics is the

study of the derivation of a token showing the relationship

between the surface and deep structures (Jakobson 1970).

These relationships may be expressed using rewrite rules.

Rewrite rules may be used to define what legal sequences of

terminals and non-terminals may be generated. That is, rewrite

rules may be used to define syntagmatic relations. Rewrite rules

may also be used to define paradigmatic relations. For example,

the following rewrite rule, where "." indicates alternative

right-hand side substitutions, -

£ A -> B . C . D 3

describes a paradigmatic relation where functionally the tokens

'B' , 'C' and 'D' are equivalent, all being derived from the

non-terminal 'A'. This implies a hierarchical relation, as the

category 'A' includes the tokens 'BI, I C I , and 'D'

The 	representation 	of 	syntagmatic 	and 	paradigmatic

relationships in a grammatical definition are clearly separated in

a GGDL definition. 	Syntagmatic relations are defined in the

1

rewrite rules, and though from the rules it is visible what

paradigmatic alternatives there are for any substitution, how the

choice of substitution is to be made is defined apart from the

rewrite rule. The definition of the syntax of the language in the

form of rewrite rules and the control of paradigmatic selections

are distinguished processes in a GGDL language definition: there

is a clear distinction between the rules that define a language's

syntax and the procedures that control the process of generation

given the syntax specification.

The separation of the specification of a language's syntax and

the control of generation using the syntax definition is a natural

way to separate the definition of a mechanism to generate

utterances in a language. It can be likened to separating the two

problems of 'what to say! at any given time, and 'how to say it'.

The syntax of a language consists of a fixed set of rules which

define 'how' things may be generated, ie. in what forms. However,

the process of generating an utterance which conforms to the

syntax is dependent on 'what' should be generated at any given

time. It is dependent on the context in which it is generated.

This context is possibly always changing.

In the transformational processing stage, parts of the

structure may be subjected to complex transformations. The

phrase-structure rules generate an abstract structure with special

characters marking structural transformations that should be

applied and the transformational processor generates from this

string a structurally transformed string (see Figure 3-2). These I t

40

COMPOSITION

Generated by

Rewrite Rifles
Part 1 Structure

/
transform melody

Part 2 Structure

N
transform melody

////////I\\\\
(3 , 10,6, 3,2 .3 ,5 ,6 , 8 , 6 , 5, 3) @T #5f @1(3,10,6,3,2,3,5,6,6,6,5,3)

Transformed by
Transformational Processor

part 1,3,10,6,3 ,2,3,5,6,6,6,5,3, part 2,10,3,6,10,11,10,8,6,5,6,8,10

Figure 3-2: A parse of the generation of the beginning of CONTRAPUNCTUS XII from
J.S. Bach's 'Art of Fugue'.

First, a terminal string is generated by applying rewrite rules.
[COMPOSITION -* Part 1, STRUCTURE, Part 2, STRUCTURE]
[STRUCTURE • TRANSFORM, MELODY]
[MELODY -+• 3,10,6,3,2,3,5,6,8,6,5,31
[TRANSFORM .* - (Se. null) . @T J5 @1 (i.e. inversion

transposed a fifth)]

Second, parts of the string are transformed. Note that '6' indicates
a transformational :chaaga marker.

41

transformations correspond to commonly used music transformations

such as transposition, inversion and retrograde.

Recent analytical research has suggested that compositions may

often be described as consisting of a small number of basic units

or strings, eg. two and three note patterns, which are subjected

to a number of transformations to generate complex music

structures. Rouget (1961) analysed African chants and found that

they could be described in terms of a very few 'minimal units'

which are repeated and transformed. Similarly, Bertoni, et al

(1978) found that Bach could be analysed and represented with a

few musical units and the transformations of inversion,

transposition and retrograde.

This suggests that the process of composition consists, at

least in part, of defining minimal units and selecting

transformations that should be applied to them to generate larger

structures. In QGDL one can define such units and

transformational structures using the phrase-structure rules and

the process of applying the transformations is automated.

However, the complexity of structures described in these terms

still may be rather great. An analysis by Goguen (1975) of 'Three

Blind Mice' in terms of three minimal units and some

transformations suggests that the problem of formally representing

the structure of whpt would ordinarily be considered a trivial

musical example need not be non-trivial (see Figure 3-3)

Lastly, a morphological mapping stage takes the abstract

42

.gure 3-3: Goguen's Analysis of "Three Blind Mice".
The piece is described in terns of the minimal thematic
units - i.e. repeated strings of notes - which can be
found. There are three, each encircled in the above
diagram. These units are sequenced in various
juxtapositions and with various transformations applied..
to form the complete piece; 	indicates succession.

43

representation of the music structure, generated by the

phrase—structure and transformational processing stages, and

translates it to an interpretable format. This process of mapping

may also be formally defined in GGDL. One could define rules to

map an abstract representation of a music structure into, for

example, data formatted for a synthesizer, or to a score format

(see Figure 3_)1).

The remainder of this chapter describes the facilities of the

GGDL language for defining a generative grammar. It is divided

into three sections dealing in turn with the three stages of

processing of the GGDL generative system:

generation with Phrase—Structure Rules

Transformational processing

Morphological Mapping.

Figure 3-4: A structure generated from the rewriting and transformational
processors (see Figure 3-2) shown after mapping for a

graphics program.

3;

1 Phrase-Structure Rules

3.1.1 Rewrite Rules

A common way of formally representing the rules of a grammar

are 'rewrite rules'. These rules take the form:

£ x -> Y 3

where the arrow may be interpreted as an instruction to replace or

'rewrite' the character string occurring to the left of the arrow

with the character string to the right of the arrow. Often a rule

allows more than one possible substitution of the characters found

on the left of the arrow. An example of this in GGDL is:

B,. C, D, . 	. F.. G, 3

where there are six alternative choices for the substitution of

t)(t separated by periods ('.').

To initiate the generation of an utterance in the language

defined by a set of rewrite rules, a string of characters is input

to the generative system. All the sequences of these characters

which match the left-hand side (LHS) of one of the rewrite rules

is substituted by one of the sequences on the right-hand side

(RHS) of that rule. If a string of characters can match more than

one LHS, a RHS string from the rule with greater priority is

substituted (cf. 3.1.12)..

3.1.11 Rewrite Conventions

GGDL uses notational conventions for rewrite rules that require

all rules to be contained within square brackets, ie. 'P and 1 1 1 ;

the period (' .) character will separate alternatives on the

right-hand sides of rules; in terminal (3.1.13) strings the comma

(',') is a separator for character strings which are morpheme

names, ie. the names of objects; parentheses may be used to group

morphemes.

The '' character is interpreted in the context of rewrite

rules as meaning "any string of characters" and can be used on the

left-hand side to indicate that a match is found if the separated

LHS characters occur with any string of characters in between them

in the input string. If the '' character is also used in the RHS

character string, the replacement strings on the right-hand side

of the rule will replace each of the separated character strings

of the left hand side. For example, the rule

[STRING1 - STRING2 -> STRING3 - STRINGII 3

will result in the substitution of STRING3 for STRING1 and STRING1

for STRING2. The same number of '' characters must occur in the

RHS substitution as on the LHS. Alternatively, if the ''

character only occurs on the left-hand side of the rule, then

everything between and inclusive of the characters matched on the

left-hand side will be replaced by the right-hand side

substitution. Alternative RHS substitutions may use, in the same

rule, either format. For example:

[Q - F, X - P -> V - A,B, W - H,G . U 3.

47

3.1.12 Rewrite Rule Priority

The priority of application of different rules is implicit in

their ordering - the first rules are applied first. The different

ordering of rules, it should be noted, may result in a different

rewriting.

In rewriting, first all matches with the LHS of the first rule

are searched for, each match resulting in a substitution with one

of the RIlS character strings. The search for a match with the LHS

of the rule begins at the start of the string. By default, the

search for any remaining matches with the same rule continues from

the point in the string immediately after the substituted string.

This makes it possible to have RHS substitutions which include the

same character string as the LHS without causing infinite

recursion.

Alter all matches with the LHS of the first rule have been

found and substitutions have been made, matches with the LHS of

the second rule are then searched for, beginning again at the

start of the string. This process is repeated until all the rules

have been tried with successful matches resulting in

substitutions. If any matches have been found in the cycle

through the rules the cycle is repeated and the process of

rewriting continues by searching for matches with the LilS of the

first rule, and, after applying the first rule, continuing with

the remaining rules. The process of rewriting is ended when no

matches are found with the LHSs of any of the rules. That is, the

/

48

rewriting process cycles through all the rules in order repeatedly

until a complete cycle without matches is made. The string will

at this point consist only of terminals and be output to the

Transformation process (Cf. 3.2)

It is possible, however, to set flags in a GGDL grammar program

to indicate that generation should not be done in the manner

described above, ie. the default. One flag may be set to

indicate that the rules should be cycled through in order, from

first to last, but that on completion of the cycle generation

should terminate. That is, the rules should be cycled through

once only. A second flag may be used to indicate that, after a

match, searching for further matches with the same rule should

continue from the beginning of the input string so that any

significant changes may be considered and recursion may occur

within a single rule. These flags may be altered during

generation by user—defined functions or procedures (cf. 3.1.24).

It is the responsibility of the user to ensure that generation

will not lead to inftnite recursion and that the string finally

generated consists only of terminals.

3.1.13 Terminals and Non—Terminals

Terminals and non—terminals are represented by strings of

characters which are their names. Non—terminals are sequences of

characters which will ultimately be replaced by other characters,

or possibly a null string, in the process of 'rewriting' the

string. Terminals are sequences of characters which may be found

in the final output string after rewriting has been completed and

for which there must exist a morphological definition that permits

them to interpreted at the morphological stage of generation.

Therefore, non-terminals must be found on the left-hand side of

rules whereas terminals need not be. 	All space-characters and

newlines are ignored in rewrite rules. The names of terminals and

non-terminals, ie. character strings, are separated by the

separator character in rewrite rules as well as in the string that

is rewritten.

In GGDL, no distinction is made between upper and lower case

characters; all characters are read as upper case. However, for

clarity, the convention for the examples presented in this thesis

is that terminals are represented by lower case character strings

and non-terminals are represented by upper case character strings.

3.1.14 Types of Rewrite Rules

Rewrite rules may be distinguished by certain properties of

their left-hand side (LUS) and right-hand side (RHS) , rules of

different types having a greater or lesser degree of power in

expressing grammatical relationships. In Chomsky (1957), four

different types of grammars are defined where each is qualified by

the type of rewrite-rules that may be used in defining a language.

These are, beginning with the weakest in expressive power, Type 3

(Finite-State) • Type 2 (Context-Free), Type 1 (Context-Sensitive)

and Type 0 (Free) grammars. Each of the lower grammar-type rules

may be used in the definition of a more powerful grammar. For a

50

full discussion of these grammars and the differences in their

expressive power, Lyons (1968), Chomsky (1957) or any introductory

text dealing with generative linguistics should be consulted.

GGDL permits the use of all of these types of rules.

3.1.141 Type 3 Grammars

Type 3 Grammars are characterised by rewrite rules which have

only one non-terminal on the LHS and at most one terminal and one

non-terminal, always to the right of a terminal, on the RHS of the

rule. A Type 3 rewrite rule would be:

[X -> a, Y]

where !A' is a terminal and 'Y' is a non-terminal. 	By using a

number of such rules an infinite variety of sequences may be

generated, eg.:

Grammar-Type-3:
Rule 1: £ X -> a, Y
Rule 2: C Y -> b, Y .. b, 1 2
Rule 3: [Z->c,Z .d,X.dJ

('a','b','c', and 'd' are terminals as they do not occur on the

LHS of any rules.)

If such a grammar were initiated with the non-terminal 'X', a

string of terminals would be generated consisting of strings with

an 'a' followed by an arbitrary number of 'b's followed optionally

by an arbitrary number of 'c's and then a single 'd' An example

of a state of the string during generation is:

1) a,b,b,c,d,a,Y...

By application of Rule 1 to C X J the string C a,Y J is generated.

nf<4 •Vt
2

\. NgJ

The application of Rule 2 produces C a,b,Y] and again, produces

a,b,b,Z]. 	Applying Rule 3 produces C a,b,b,c,Z J and again,

produces I a,b,b,c,d,X J. 	Then applying Rule 1 (cf. 3.1.12),

a,b,b,c,d,a,y] is generated. 	The process of rewriting would

continue until Rule 3 was applied and generated only the terminal

Other examples this grammar would generate are:

a,b ,b ,b ,b ,b ,c ,c 10 ,0 ,c ,c ,c ,c ,c,d ,a,b,b ,c,d,a,b,b,b,d

and:

a,b,d,a,b,b,c,d,a,b,b,b,c,c ,c,d,a,b,b,b,b ,c,c ,c,c,d

and:

a,b ,b ,b,c,c ,c ,d ,a,b ,b ,c ,c ,d ,a,b,c,d

3.1.142 Type 2 Grammars

Type 2 Grammars are characterised by rewrite rules which have

only one non—terminal on the LHS and any number of non—terminals

and/or terminals on the RHS of the rule. A Type 2 rewrite rule,

for example, is:

CQ—>c,G, f,ZJ

where the RHS elements may be either terminals or non—terminals.

Thus, any non—terminal may generate in one production a string of

non—terminals and terminals.

Looking again at the fourth example of a string generated by

'Grammar—Type-3', the number of 'b's and succeeding 'c's is always

the same. This however, need not be the case as can be seen from

other possible strings the same grammar can generate. It is not

possible to define a Type 3 grammar to only generate strings where

52

the numbers of 'b's and succeeding 'c's is always the same, ie.

strings of 'b'(n)'c'(n) for all values of 'n'

Instead of Grammar-Type-3, a set of rules which will always

generate sequences where the number of 'b's is equal to the number

of 'c's can be defined using context-free, ie. Type 2, rewrite

rules.

Grammar-Type-2:
Rule 1: £ X -> a, Y
Rule 2: C Y -> Q. Z]

	

Rule 3: C Q -> b, Q, c 	b, c
Rule 14: C Z -> d, X . d J.

Examples of strings generated by Grammar-Type-2 are:

a ,b ,b ,c ,c ,d ,a ,b ,b ,b ,b ,c ,c ,c ,c ,d

and:

a ,b ,b ,b ,b ,b ,b ,b ,b ,c ,c ,c ,c ,c ,c ,c ,c ,d ,a ,b ,c ,d

3.1.1143 Type 1 Grammars

The rewrite rules of a Type 1 Grammar allow one or more

non-terminals and any number of terminals on the left side of the

rewrite arrow. There should be at least as many tokens in each

right-hand side alternative. This makes for a considerable

difference in power over rules of Type 2 Grammars as now it is

possible to specify the context in which a non-terminal should be

rewritten. With Type 1 rules it is possible to define different

rewritings of a non-terminal in different contexts.

In a Type 2 Grammar, as there can be no more than one

non-terminal on the LHS of the rule, any occurerce of the LHS

53

characters is rewritten without consideration of the context in

which it is found. Should one want to rewrite the non-terminal

'P' as '0, V only if the preceeding non-terminal is '5', there is

no way to express this with a Type 2 rule. As Type 1 Grammars

allow more than one non-terminal or terminals on the LHS of the

rule, this might be represented as:

C 3, P -> S. Q, T 3.

The rewriting of 'P' in other contexts would be represented by

other rules.

In another example, a cadence C I,V,I 3 may be generated by the

rule:

Grammar-Type-1:
Rule 1: C CADENCE ->1, V, I 3

In order that the occurence of the tonic note of the tonic chord

preceeding the dominant chord does not weaken the effect of the

final tonic chord, a second rule may be added which considers the

context of the tonic chords:

Rule 2: C I, V -> 16, V 3.

Now the rules will generate C 16, V, I 3.

3.1.144 Type 0 Grammars

Type 0 Grammars allow rewrite rules of any form - ie. with any

number of non-terminals and terminals on either side of the rule,

null productions (strictly speaking the RHS of the other grammar

types should expand the LHS or at least not decrease it) , not

completely specified contexts, and so on.

54

For example • Type 0 rules may be used to represent a Sonata as

an ABA form.

Sonata-Grammar:
Rule 1: [SONATA -> A, B, A
Rule 2: [B -> DEVELOPMENT
Rule 3: 1 A -> themel in KEY, theme2 in KEY
Rule 14 [thne1 in KEY -> themel in tonic 3
Rule 5: £ theme2 in KEY - DEVELOPMENT -> theme2 in dominant

DEVELOPMENT I
Rule 6: £ DEVELOPMENT theme2 in KEY -> DEVELOPMENT -

theme2 in tonic
Rule 7: £ DEVELOPMENT -> modulation of themes

This grammar will, if initialised with 'SONATA', generate

£ themel in tonic, theme2 in dominant, modulation of themes,
themel in tonic, theme2 in tonic

It should be noted how the '' character is used to say, for

example, in Rule 5, "If 'theme2' occurs before the DEVELOPMENT"

and in Rule 6, "If 'theme2' occurs after the DEVELOPMENT". Though

Rules 6 and 7 specify a context in which KEY should be rewritten,

the context is not completely specified. This distinguishes this

'Sonata-Grammar' from a Type-1 grammar as in the latter, the

context in which a non-terminal is to be rewritten must be

completely specified by terminals and non-terminals. It also

should be noted that the order of the application of the rewrite

rules in this example 'Sonata-Grammar' is significant. If Rule 7

were to be applied before Rules 5 and 6, the matches of these

latter rules would not occur and improper strings would be

generated, le. strings that still included non-terminals. The

priority of the application of different5 rules is implicit in

their ordering - the first rules are applied first (cf. 3.1.12).

It is also possible in a Type 0 Grammar to rewrite terminal

strings. This may be done by defining rewrite rules which will

55

rewrite terminals or sequences of terminals. 	Alternatively, a

Type 0 Grammar also permits the inclusion of a third type of

character string - ie. neither terminal nor non-terminal - the

'Structural Change Marker'. These initiate transformations,

special rewritings, of the string in a distinct transformational

stage which follows the process of rewriting using the

Phrase-Structure Rules. Formally, a Transformational Grammar is a

Type 0 Grammar with special type rewrite rules - the

Transformational Rules (see Section 3.2).

Though theoretically, 'Structural Change Markers' are seen as

distinct in type from terminals and non-terminals, in practical

terms, using GGDL where the process of generation with

Phrase-Structure Rules and the process of structural

transformation are separated, these markers may be seen as

terminals in the Phrase-Structure Rules. That is, after the

process of rewriting is completed, the generated string may

include such markers as well as the defined terminals of the

rewrite rules.

3.1.2 Control of Rewriting

Rewrite rules may generate more than one string:

C A,B -> 0, . Q,C - X].

Rewrite rules define paradigmatic relationships in a grammatical

definition and where there is more than one possible generation,

ie. more than one RI-IS string, from a given rule, the question

arises as to which one should be selected and how selection should

56

be controlled. Apart from the rewrite rules, a separate level may

be defined in the grammar expressly for the purpose of controlling

selection in the rewriting process. To control selection, the

system provides a number of 'system functions' which may be

applied for determining selection, or alternatively, functions may

be defined. A function for selection control is essentially a set

of rules by which selection from several choices is determined.

In GGDL programs, a high—level programming language is provided in

which routines and functions may be specified precisely, a more

rigorous definition, of which may be found in Appendix 1. Examples

of GGDL programs also can be found in the Appendices.

3.1.21 System Control Functions

The GGDL language has three predefined selection functions that

may be used to control the process of rewriting. These permit

selection from a number of possible selections to be made

randomly, by invoking a control mechanism simulating serial

selection, and by invoking a mechanism which simulates a

finite—state machine.

3.1.211 Random Selection

Where there are several RHS strings and no explicit selection

control, as in the rules above, a random choice is made from all

the possible strings. By default, selection is random. An

example of a rewrite rule where selection of a RHS string is

random is:

57

X -> G . X,WZ . NOTE . NOISE 3

3.1.212 'Blocked' Generation

A special system control function can be invoked by the '

character immediately following the rewrite arrow or invocation

number (of. 3.1.3):

[Q->! 	A,.S,.c,.D,. E,].

This will select randomly one of the possible RHS strings and then

'block' the generation of this string until all the other possible

selections have been chosen. No possible selection can occur

twice until all others have occured at least once. For example,

given the string C Q,Q,Q,Q,Q,Q,Q,Q,Q,Q, 3, the repeated

application of the above rule for rewriting "Q" might generate:

C C,A,E,D,B,D,E,C,B,A,].

The selections from the RHS are made randomly, but none of the RHS

possibilities are selected a second time until all the possible

RI-IS strings have been selected at least once.

This selection principle is a familiar one in contemporary

music based on the serial law of Schoenberg that 'no note may be

repeated in the series until all notes have occured once' . It is

also used in the programs of G. M. Koenig (1972, 1978) where it is

called 'Series'

ON

3.1.213 Finite-State Generation

The second provided system control function allows for the

control of generation by a finite-state transition matrix. It is

invoked by an asterisk (1*1) immediately following the rewrite

arrow or the invocation number (Cf. 1.1.3):

[A -> *

Following the asterisk there must be 'arrow-bracketed' (ie. '<'

and '>') control-information and a matrix consisting of rows of

transition values for each of the strings that may be generated.

The bracketed control-information consists of two variables.

The first, which is obligatory, is the number of possible strings

that may be generated by the rule. This must be a constant value.

The second is an optionally defined value for the initial state of

the finite-state machine of this rule only, ie. the state from

which the first transition using the rule is to be made. As this

value is optional, by default, the initial state is randomly

determined from among the possible states. The state-value will

automatically be updated by the system when the grammar is

invoked.

The control values are separated by a comma (','). Examples of

bracketed control-information for a Finite-State rewrite rule are:

<3>

and:

< 2, 1 >

59

The matrix of transition values is defined as a set of rows of

transition values with each row enclosed in parentheses. Each row

is headed by the character string associated with a transition to

that state, ie. the string that will be generated upon transition

to that state. The string is followed by constant values which

give the weights of the possible transitions from the state

associated with a row to other possible succeeding states. All

the values are separated by periods ('.'). There must be the same

number of rows and the number of transition values for each row as

the value given to the first of the control—information variables.

A row may take the form:

A . 21 . 357 . 814 . 189 . 165 . 204 . 408 . 96

where the string generated will be 'A t and there are eight

possible transition states, ie. there are eight possible strings

that the rule may generate. In the case of this row, the

probabilities of the transitions to the respective states, on the

next invocation of the grammar, are 2.1%, 35.7%, 8.4%, 18.9%,

16.5%, 20.4%, 40.8%, and 9.6%.

An example of a complete Finite—State rewrite rule is:

[X —> * C 8, INITSTATE >
 . 	 21 . 	 357 . 	 814 	. 189 	. 165 . 	 204 . 	 408 . 	 96
 . 	 84 . 	 59 . 	 76 	. 126 	. 150 . 	 136 . 	 72 . 	 1114
 814 . 	 323 . 	 21 	. 126 	. 150 . 	 36 . 	 272 . 	 144

336 . 	 81 . 	 19 	. 84 	. 135 24 . 	 48 	. 216
19 . 	 63 . 	 336 . 	 171 	. 110 . 	 306 . 	 102 . 	 64

 . 	 76 . 	 16 . 	 304 114 	.. 100 . 	 204 . 	 18 	. 96
C . 	 76 . 	 57 . 	 84 	. 114 	. 100 . 	 54 . 	 68 . 	 96
C . 	 304 . 	 14 . 	 76 	. 76 	. 90 . 	 36 . 	 12 	. 144

The finite—state rewrite rule in GGDL could be used for the

description of 'stochastic composition rules' such as those used

by lannis Xenakis. 	The finite-state rewrite rule above, for

example, is an equivalent representation in GGDL of the matrix of

transition probabilities defined by Xenakis and shown in Figure

2-1.

3.1.22 Non-System Rewrite Control

If the system control functions are found inadequate for the

type of control desired, in GGDL a simple high-level language is

provided for the definition of non-system rewrite control

functions. Non-system control functions are called by name,

enclosed in arrow-brackets immediately after the rewrite arrow or

invocation number (cf. 3.1.3). The possible strings which may be

selected by the function follow separated, as usual, by periods

(1 . 1). A rewrite rule with control by a non-system function is,

for example:

[X -> < FUNCNAME > SELl . SEL2 . SEL3 J.

The control functions are written apart from the rewrite rules.

They are functions to the extent that they must return an integer

as a result, the number being interpreted as the selection of the

Nth possible EMS string. In this thesis non-system control

functions are defined as sets of English statements defining the

rules for choosing a RUS element. Each set of such statements

will be given a name and this name will be the name of the

function which is referred to as described above - ie. it is

called for making a selection where the name occurs between

arrow-brackets.

61

3.1.3 Multiple Invocation

Any rule may be invoked to generate several of the RHS strings

concatenated in a single rewrite—generation. This may be done by

placing immediately after the rewrite arrow an 'invocation'

number, which may be any legal arithmetic expression, enclosed in

'#'s. For example, a 'blocked' generation rule (of. 3.1.212)

could be defined which, for each invocation, ie. whenever a match

with the rule's LHS "Q" is made, would generate a concatenation of

five possible RHS strings. That five strings should be generated

is indicated by the invocation number, " #511 ", just after the

rewrite arrow.

EQ ->#5# 	A,.,.C,.D,. E,]

As there are only five possible RHS strings and blocked generation

is used, ie. no RUS string may be selected a second time until all

other possible selections have been chosen once, each time the

rule is invoked a complete series of the RHS elements will be

generated. Example strings are:

A,B,C,D,E

B, E, D, A, C

C, A, E, B

3.1.4 Metaproductions

Metaproductions are a special type of production or rewrite

rule by which added context—sensitive control may be gained in a

grammar. Originally they were introduced by Aad Van Wijngaarden

(1965) and were later used in the description of the, at the time,

62

	

new programming language ALGOL-68. 	The use of metaproduction

rules in 'W-Grammars' • ie. grammars with .metaproductions, is

discussed by Uzgalis (1977). Using metaproductions in a grammar,

one defines two sets of rewrite-rules, a set.. of 'metaproduction

rules' and a set of 'hyper-rules'. From these a third set is

generated - the set of rewrite rules used to generate the

language.

Netaproduction rules may have the same format as any rewrite

rules (cf. 3.1.2) excepting that, in GGDL, they are enclosed by

the '" character rather than brackets 'C' and ')' . An example of

a inetaproduction rule is:

"Q->! 	A,.5,.C,.D,.

Essentially, the LHS of a metaproduction rule acts as, a

variable in the 'hyper-production rules'. Hyper-production rules

are the bracketed rewrite rules with uninstantiated variables, ie.

character sequences which match those of the LHSs of the

metaproduction rules. The metaproductiôn rules are each invoked

once and once only with the initialisation of a program and a

string is generated from the RHS possibilities.. Only one of the

possible strings that the rule may generate is generated.

Subsequently, the LHS of the metaproduction is matched against the

character strings, both LHS and RHS, of the hyper-rules, the

ordinary rules enclosed by brackets 'C' and 'P , and where a match

is found the one generation of the metaproduction rule is

substituted for the metaproduction rule's LHS. This substitution

process is slightly different from Van Wijngaarden's "Universal

63

Replacement Rule".

For example, two metaproduction rules are defined:

	

SERIES1 -> #54 1 	A,.B,.C,. D, . E.
SERIES2 -> /)54 ! A, . B. . C, . D, . E, "

and there is a rewrite rule with the metaproduction-LHS-strings

(ie. a hyper-rule)?

(COUNTERPOSE -> SERIES2, SERIES1, €1 (SERIES1),
@B (SERIES2)]

With the initialisation of the program, generation with the

metaproduction rules will be invoked. 	Let us say that SERIES1

generates the string "A,C,E,D,B" and SERIES2 generates

"B,E,D,C,A". The LHSs of the inetaproductions will then be matched

against strings of the rewrite rules and these generated strings

substituted where matches are found. The rewrite rule

"COUNTERPOSE" will now look like:

E COUNTERPOSE -> B,E,D,C,A,A,C,E,D,B, @1 (A,C,E,D,B)
B (B,E,D,C,A)]

It is with this new rule that rewriting and generation of strings

in the language will now take place.

The added facility of metaproductions allows one to more easily

express certain relationships. With hyper-rules, one can

describe, for example, a compositional structure as a relationship

between objects where the objects are undefined. By instantiating

the hyper-rules the structure is 'filled' with a different set of

objects without affecting its definition. As in the above

example, one could describe manipulations of a series or theme and

then use a different series or theme as the basis of the

-structure, for example, by -altering - the -- rule by which the ser-ies--

- 	1 	 - 	--
1) In GGDL, the character '@' indicates a 'structural change - marker'.

See Chapter 2. 	 - 	 - -
64

or theme is generated.

Another example of the additional expressive power with

metaproductions would be the case where one wanted to generate the

same number of t a's as 'b's and 'c's. With Grammar.-Type-2 (of.

3.1.1 112) it was possible to generate the same number of objects if

they succeeded one another and then only with two objects. It

would not be possible with either Type 2 or Type 3 Rules to

generate the same number of several objects, and though it is

theoretically possible with a context-sensitive grammar, ie. Type

1, it is extremely difficult and impractical to express with such

rewrite rules.

M-Grammar:
Hrule 1: " X -> Y . X,Y 11
Rule 1: 1 Q -> X,a, X,b, X,c I
Rule 2: 1 Y,a -> a,a
Rule 3: 1 Y,b -> b,b
Rule 4: 1 Y,c -> c,c I

Strings that this grammar will generate if initialised with 'Q'

are:

a ,a ,a ,a ,b ,b ,b ,b ,c ,c ,c ,c

a ,a ,b ,b ,c ,c

M

2 Transformational Rules

3.2.1 Structural Change Markers

'Structural Change Markers' initiate transformations of the

character—string generated from the Phrase—Structure Rules. In

GGDL, there are four transformations which can be initiated by the

occurrence of a Structural Change Marker. The transformations

take strings of characters enclosed in parentheses as arguments,

these are what Chomsky (1957) calls 'kernel strings'. The

trans forthations are initiated by the markers 'B', '€1', 'T' and

The first three transformations reverse the order of (B)

invert the relative relationships of (RI), or transpose (@T) the

relative relationships of one parenthetically enclosed string of

morphemes, ie. one of the kernel strings. The fourth

transformation (GM) 'merges' two or more sets of morphemes. The

inversion and transposition transformations require that the

morphemes be declared in ordered sets. The argument or kernel

string of a transformation may include markers (with their kernel

strings) indicating further transformations; such transformations

are said to be 'nested'

In a string where several of these markers are to be found,

first the transposition transformation is applied, and if nested

within an outer transposition transformation, the innermost

transformation is applied first. Likewise, next the inversion

transformation is applied, and then, when all transposition and

inversion markers have been removed by applying the appropriate

MR

transformations to their arguments, the backwards transformation

is applied, though where the markers are nested, this

transformation works from the outermost parenthetically enclosed

string to the innermost. Lastly, the merge transformation is

applied working innermost application outwards.

For the following examples, an ordered set of morphemes is

defined:

Ea,b,c,d,e.,f,g,eg,eg2,k,l,sk,er,df]

Each morpheme is named by an arbitrary sequence of characters and

is associated with an index which is its ordinal position in the

set. For example, the index of 'a' is '1', and the index of 'eg'

is 1 8 1 . Morphemes may only belong to one set. The inversion and

transposition transformations are applied modulo the number of

elements of the morpheme set in which a given morpheme is

declared.

During the process of generation, a string is passed from the

Phrase-structure Rules rewriting process to the Transformational

process. The latter process removes markers from the string by

applying the appropriate structural transformations.

3.2.11 €1 - Inversion Transformation

The inversion transformation is based on the concept of the

'interval' between a pair of morphemes. Given an ordered set of

morphemes, the 'interval' between two morphemes is equivalent to

the difference between their indices. For example, given the

ordered set of morphemes defined above, the interval between 'a',

67

the first element in the set, and 'e' , the fifth element in the

set, is

The inversion transformation 'inverts' the intervals in a

sequence of morphemes beginning with the first element in the

sequence. The inversion of a string of morphemes, then, is the

string in which the first element, the 'base' element, is the same

and the intervals between all of the succeeding elements are the

'inverse' or 'negative' of the intervals in the original string.

To generate the inversion of a string of morphemes, the interval

between the first element and its successor is calculated. Then,

the interval is subtracted from the index value of the base

element and the result is used as an index to select the next

element of the inversion string from the morpheme set. The

inversion of the next interval in the kernel string is then

subtracted from the index of the second element of the inversion

string and used to select the third element, and so on until the

complete inversion string has been generated. All arithmetic is

carried out modulo the size of the morpheme set.

For example, if the kernel string were:

[€1 (a,e,er,b,k) 3

the inversion string that would be generated when the inversion

transformation was invoked would be:

C a,1,c,df,f I

In the kernel string, the interval 'a,e' is '+14'; the element four

steps below 'a' is '1', so, in the inversion string 'a,e' has

become 'a,1'. Likewise, the interval 'e,er' is an 1 +8'. 	This

inverted becomes '-8' and the element in this relation to '1' is

cl The inversion is applied to all the intervals successively

to produce the transform string.

For this transformation of inversion to correspond to what is

understood in music to be inversion, all the elements of the

kernel string must belong to the same set. The result of applying

the inversion transformation to a kernei string including

morphemes from different sets is undefined.

3.2.12 @T - Transposition Transformation

The fl transform is a shifting process - the intervals between all

the elements (morphemes) are maintained but shifted either upwards

or downwards in position in the ordered set. The €T

transformation may be followed by a 'transposition interval', a

number enclosed by the '/V characters which is the interval by

which the argument is shifted or transposed, by default the shift

is one position in the scale upwards.

As an example, if the string input to the transformation

processor were:

C €T C a,g,eg,l,c,df)

the process would produce:

C b,eg,eg2,sk,d,a 1

By default, the transposition interval was '+1'. 	If the input

string were:

C €T # -5 # (a,g,eg,l,c,df)

the result would be:

1-) le., the ordered set in which the morpheme is declared: See page 67.

69

£ k,b,c,f,sk,eg2 J

3.2.13 €3 - Backwards (Retrograde) Transformation

The €3 transformation reverses the order of the morphemes enclosed

by the set of parentheses. Given the string:

[€3 (g,c,eg,er,a)]

the following would be produced:

C a,er,eg,c,g]

3.2.14 €M - Merge Transformation

The €M merge transformation allows one to superimpose one

generated structure on another. It requires as an argument at

least two sets of morphemes - each with the same number of

morphemes. The two sets are reordered so that the first morpheme

of the first set is followed by the first morpheme of the second.

(and other sets) • the second, by the second of the other sets,

etc. This allows one to generate independently a number of

structures - for example, by a different set of rules - and then

superimpose them upon one another where each morpheme might

represent a different component of the final sound. A string of

pitches and a string of durations may each be generated and then

combined (merged) . For example,

C €M (pitchi, pitch2, pitch3, pitch 11) (dun, dur2, dur3
durk) 3

is transformed by the merge transformation into:

£ pitchl, dun, pitch2, dur2, pitch3, dur3,
pitch4, dur 14 3

The numbers of elements in the sets must be the same.

70

The '€T'. and 1 €1' transforms replace a given morpheme with

another from its set. If one applies an inversion to a group of

morphemes from different sets the notion of inversion as it is

normally understood in musical contexts will be lost, similarly

for transposition.

The 	'SB' and 	'€M' 	transformation take groups of morphemes

enclosed 	in parentheses 	as 	single objects and will move 	the

complete group.

Strings may be embedded and mixed. Where this occurs priority

is €T (innermost first) , €1 (innermost first) , ëB (outermost

first) , M (innermost first)

3 Morphological Rules

3.3.1 Morphological Definition

Each morpheme is represented by a string of characters, its

name. The rewriting and transformational processes generate a

string of morphemes, representing 'objects' such as sounds or

durations, separated by the ' ,' character. The morphemes are all

terminals in the generative grammar. The morphemes are mapped

during the morphological stage of processing the string into a

representation that is suitable for interpretation - eg. a

score.l.

1) Pedantically, if the score is in the form of a description of

71

Using morphological rules, morpheme strings generated by the

GGDL. grammatical definitions can be mapped into a format

acceptable to a given synthesis program. The morphological

mapping process is defined by a set of rules separate from the

Phrase—Structure Rules. This allows the substitution of a

different mapping process with the same generative mechanism, ie.

the latter only generates an'empty' structure and how it is

'filled' in, as far as the system is concerned, is arbitrary. The

same structure may be filled by alternative sets of objects.

Similarly, the same objects may be used for the mapping of

utterances generated by different grammars.

Mapping routines describe a process for rewriting the morpheme

character strings into a different format - eg. one acceptable to

a synthesis program such as MUSIC V (Mathews 1969), or the

non—standard digital synthesizer (Holtzman 1973b,1979), or a

speech synthesizer, etc.

actual sounds for synthesis, rather than 'morphological', one
would have 'morphophonemic', or 'sonemic' , as in 'sonology'
rules, and, in the case of written output, 'orthographic' rules.
What are here called morphological rules are more precisely
'morphological realisation' rules as morphological rules still
work on an abstract level transforming morphemes into 'morphs'
In a transformational grammar designed for natural language one
can distinguish, at the morphological stage, grammatical morphemes
and lexical morphemes (lexemes) . In a language where the objects
processed by the morphological processor of a transformational
grammar are mapped independently of each other, as in GGDL (or
Chinese!), the distinction between morphemes and lexemes and the
transformation into 'morphs' is lost. In the context of a
transformational grammar, the term 'morpheme' is preferred though
'lexeme' or 'morph' could also arguably be used. A process
similar to the morphological mapping process is discussed in Roads
(1978) as lexical mapping.

72

The morphological mapping routines can generate data in the

form of characters, or in the form, of binary (1-byte) numbers, or

a mixture of the two. It is up to the user to ensure that data is

of the correct type for use with a synthesis program or otherwise.

Summary

The GGDL grammar definition language may be used to define the

grammars of many different music languages. The rules of

'stochastic' music composition could be straight-forwardly

represented using the system selection procedure for finite-state

generation (of. 3.1.213). This selection procedure could also be

used to represent, for example, Koenig's 'Ratio' selection

procedure by assigning the same values to each row of the

transition matrix.]n addition, Koenig's 'flea' selection

procedure is equivalent to the default random selection (of..

3.1.211) made by GGDL where a number of possible selections are

given but no selection procedure has been indicated; and his

'Series' selection procedure is the same as the system procedure

of blocked generation (cf. 3.1.212).

In addition, a composer may, should these provided procedures

not be satisfactory for selection, define his own procedures using

the high-level language programming facilities available. These

procedures may then be integrated with the syntax specification of

the composing language represented by the rewrite rules. Though

it would also be possible to program such procedures in other

programming 'languages, the GGDL language has been specially

73

designed to facilitate the expression of music language

constructs. By separating the definition of a language syntax

from the control of selection, it permits an elegant and clearly

interpreted representation of a language definition. Furthermore,

by providing a framework and conceptual foundation, the GGDL

system should facilitate the process itself of formalising the

rules of a language.

The tranformational processing of GGDL permits the simple

representation of music structures with components which are

different only to the extent that they are transformations of the

same object. Music structures can often be described in terms of

a small number of basic components which are transformed and

juxtaposed to form complex structures. The formal description of

such structures is greatly facilitated by being able to simply

'mark' such transformations.

Lastly, the independence of the mapping process introduces an

elegant modularity to a grammatical description. This results in

flexibility when defining a generative grammar for music. The

objects of the composition process may be defined independently of

the structure generation process and thus, different objects may

be used with the same structure generation process or,

alternatively, the same objects may be used with different

generation processes.

GGDL is a powerful language which may be used to aid composers

in the composition process. 	Using GGDL, composes may define

74

music languages. Composition, or the generation of structures, in

the language may then be done automatically by a computer.

75

Chapter L: The Generation of Music Structures

GGDL is a programming language designed especially for the

definition of generative grammars for music languages. A

definition in the form of a program is sufficiently explicit that

a virtual machine can execute the instructions of the program to

generate utterances in the described music language. In this

chapter, it is shown how GGDL may be used to describe the grammars

of, or at least give grammatical interpretations of, three

compositions.

The first two examples, Steve Reich's "Clapping Music" (Reich

1972) and Arnold Schoenberg's "Trio" from the Piano Suite, Op. 25

(Schoenberg 1925), demonstrate that GGDL can be used to

grammatically describe and generate the compositions of

established composers. That is, these composers could have used

GGDL to generate their compositions.

The third example is drawn from the work of D. Hamilton, a

composer who used GGDL to compose "Four Canons" (1980) for a BBC

commission. It is shown that GGDL and the process of describing a

composition's structure by means of a grammar in order to

automatically generate a composition, was a useful aid to D.

Hamilton.

76

Steve Reich's "Clapping Music"

Steve Reich is one of the foremost proponents of 'process

music', a method of music composition associated with the 'new

simplicity' movement which was an influential school of

compositional thought in the 1970s. In process music, a

composition is defined by a set of formal rules which describe a

way of transforming a sound structure — the structure that results

from this tranfortnation process is the composition.

Steve Reich's "Clapping Music" is based on the transformation

of a hand—clapped rhythmic pattern.

"One performer claps out an unchanging rhythmic pattern, the
other, starting in unison, then displaces the downbeat, a
beat at a time, until after twelve changes of the rhythmic
position both performers end in unison" (Reich 1980).

That is, the second performer slowly moves out of 'phase' with the

first until, after 13 times through the pattern, the two voices

are back in phase with one ano'ther, ie. they are again

synchronised (Figure k—lA).

This is a composition where the rules have been made explicit

by the composer and are easily formalised. In a sense, the rules

themselves are the composition. In GGDL, the composition may be

defined as two sub—structures each of which is performed by a

separate voice.

C COMPOSITION —> voicel, STRUCTURE 1,voice2,STRUCTIJRE2]

The first structure consists of 13 repetitions of the rhythmic

cycle. 	In the rhythmic cycle, an attack (ie. clap) may be

represented by the terminal '1' and a rest by the terminal 1 0 1 .

77

- 	 - 	
--

Figure 4-1a: 	'Clapping Music' (Reich 1972); bars 1-3.

v01cE1

1 , 1 -, 1 , 0, 1 , 1 • 0, 1 , 0 , 1, 1 , 0

V010E2

0,1,0,1,1,0,1,1,1,0,1,c

1 ,.1 , 1 , 0, 1 , 1 , 0 , 1 , 0 , 1 ,.1 , 1

Figure 4-3±: 	'Clapping Music' in a representatien generated using
GGDL. The terminal 'bar' has been replaced by
newlines.

Mo

Each rhythmic cycle may be represented as a 'bar' of music.

I STRUCTURE1 -> I) 13 # bar,CYCLES1 I
I CYCLES1 -> 1,1,1,0,1,1,0, 1,0,1,1,0,]

For the second structure, given the basic rhythmic cycle, it is

necessary to 'phase' its performance with each repetition. To do

this a selection-function "SELECT" has been defined. In the

function, two variables are used: one to 'point' to the presently

performed event, either a clap (1) or a rest (0), and the other to

keep track of where the phase-shifts should occur. Rewrite rules

for generating the second STRUCTURE of the composition are:

I STRUCTURE2 -> i/ 13 // bar,CYCLES2]
CYCLES2 -> /i 12 1/ <SELECT> 1

1 ,.0,.1,.0,.1,.1,. 0,]

The function "SELECT" could be defined as:

function select

I "objno" points to present beat of rhythm
objnorobjno+1
if objno:13 then 	;I modulo 12 beats

ob jn Or 1
finish

count:count+1
if count: 12 then

a complete cycle of the rhythmic pattern has been
completed so a 'phase-shift' is required, ie.
"objno" is incremented.

objno:objno+1
if objno:13 then
objnorl

finish
countrO

finish

result objno

end

These rules generate the string in Figure 4_1B, which may be

easily transcribed or mapped, for example, for synthesis. The

composition could also be generated with other rewrite rules and

79

the function could also be defined in a number of other ways to

produce the same result. The above example is one way of

describing and generating "Clapping Music". The process, however,

is entirely deterministic and will generate only one result. One

could alter the clapping pattern by changing the terminal string

generated by CYCLES, and, perhaps, study the 'forpotential' of

Reich's 'process'

A Schoenberg Trio

The Steve Reich composition is a straight-forward deterministic

process that is readily formalised and programmed. The next

example formalises the rules of a considerably more complex

compositional process. The rules defined in fact give a formal,

explicit description of one interpretation of the note-duration

structure of a Schoenberg composition. (That is to say, there may

be a number of other ways of describing the Schoenberg

composition.) However, the rules also allow for the generation of

other compositions which could be said to share the same set of

rules as the Schoenberg. A language may include a large number of

utterances - in this case, the language described includes among

many utterances, the Trio from Schoenberg's Piano Suite, Op. 25

(Figure 4-2).

The following five rules may be used to generate the note

structure of the Schoenberg Trio.

L's,'
r;n

o 10 112
p

6 	 7 YLLY '
2 J 	4 	5 ,-,.• 	 I

TRIO
tJ

Jig pp I-

I 3

__ 	 -

2 	 z 	 6 	 78 	9 102.122

06 	3 	4
h. 	 - 	 V 	V

• 	I 	
2 	s?t0t 	
'/1 T

- 	------ fr

2 	 1211109

12.
6 	 910''12 	 3 P11 	 6t DAL

—
£

I- 	 -....•- 	 -- _

e "

-A
—a.

pp.
t6 	7 	8

q Jjg!_
4 D 5

p000 pes.

6t4 	 P~

.3 	 . 	
1

------------ ___ _____

Menztettdccapo
2 	3

Figure 4-2 An analysis of the "Trio" from-Suite fur Kiavier, Op. 25

(Schoenberg, 1925)

81

Figure 4-2: An analysis of the "Trio" from 'Suite fur Klavier, Op. 25'
(Schoenberg, 1925) 	Each version of the series is identified

O - Original
I - Inversion
R - Retrograde
RI - Retrograde Inversion
6 - Tranposed six semitones

The ordinal values of the members of the series have also been marked;
note that in R6 and RI the 7th and 8th notes of the series are reversed.

82

Compositional Rules for the Pitch Structure of
Schoenberg's Trio from the Piano Suite

I Meta-production Rule:
" SERIES -> #12/I I obji, . obj2 . obj3, 	obj4, . objS,

obj6, . obj7, . obj8, . objg, . objlO, . objil, . obj12,
Rule 1:
£ COMPOSITION -> CANON]
Rule 2:
C CANON -> voicel, STRUCTURE, voice2, STRUCTURE J
Rule 3:
STRUCTURE -> # 4 # VERSION-TYPE (SERIES) 3

Rule
[VERSION-TYPE (J-> I 	.Qi () .
€B(€1 ()) . €T#6# fl. €T#6# (€1)
€T #6# (jB ()) 	€T 46/I C €8 C €1 ())]

The Schoenberg Trio is a canon. 	In Rules 1 and 2 it is

decribed as a given structure ("STRUCTURE") occuring in parallel

in time with another structure. The structures begin at different

points in time, indicated by the 'entry times' of the different

"VOICEs" (which may be defined in the mapping definition) Rules

3 and 4 are used to generate the actual structures.

The STRUCTUREs of the canon consist of four different groups of

objects (ie. SERIES) where each series is qualified by a

VERSION-TYPE, ie. a set of transformations to be performed on the

series (Rule 3). The series may occur in eight different

versions: the null transformed version " () ", the inversion

transformed version " €1 C) ", the backwards (or retrograde)

transformed- version " €8 C) ", and the backwards inversion

transformed version " €8 C €1 fl) ", and each of these four

transformed versions of the series transposed up six semitones.

However, none of these versions of the series occurs twice. It

would appear that Schoenberg has used serial selection - ie. none

of the versions of the series occurs a second time until all other

IN

versions have occurred at least once. In the rewrite rule (Rule

that serial selection should be used is indicated by the

just after the rewrite arrow.

The series is generated using a meta—production rule. By this

means, every occurrence of the SERIES in the structure is

substituted by the same generation of the meta—production rule.

If this were not the case, for each occurrence of SERIES, a new

series would be generated and the 'sense' of the composition's

structure would be completely lost - it would be impossible to

recognise what transformations had occurred as there would not be

a static reference.

The rewrite rules deal only with 'abstract tokens'. 	At the

transformational stage, 	in order for the inversion and

transposition transforms to be applied, a relative ordering of the

objects will need to be defined. In the following examples an

object's number suggests its relative position, ie. 'cbjl ' is the

first, 1 obj2' the second, and so on, though this would be

explicitly stated in a morphological definition program.

The duration structure of the Schoenberg Trio could similarly

be described by a set of rules. For example, in all but the third

SERIES of each STRUCTURE: the first six objects of the SERIES have

the same duration, the last (ie. sixth) of the sub—group being

tripled and the rest of the objects in the SERIES share the same

duration, half the duration of the first six objects, with, again,

the last object's duration being tripled. Thus, there are four

84

different possible durations: 'duration 1' CI'), 'duration 1 * 3?

(I), 'duration 21 (p), 'duration 2 * 3' (t.) The actual values to

be attributed to these duration-morphemes would be defined as part

of the mapping process; for example, 'duration 1' might be defined

as an eighth note, 'duration 2' as a sixteenth note, and so on. A

function will need to be defined to select from these duration

values to generate the correct rhythmic pattern: five 'duration

Ps, one 'duration 1 * 3', five 'duration 2 1 s, 1 'duration 2 * 3'

To generate the duration structure of the first, second and

fourth occurrences of the series, the following rewrite rule and

selection function ("SELECTDURATION") could be defined.

DURATIONS OF SERIES -> C SELECTDURATION >
duration 1 . duration 1 * 3 . duration 2 	duration 2 * 3

function selectduration
objcntrobjcnt+1 	;1 a global variable counting objects

in the series
if objcnt <= 6 then

if objcnt = 6 then result--2 else result1 finish
else

if objcnt = number of objects in series then
re su ltr If

else
resultr3

finish
finish

end

A set of rules for generating - the duration structure of the

third SERIES in each STRUCTURE could also be defined. Using a

finite-state transition matrix with four duration values, the

below meta-production rule includes in the strings that it

generates the duration pattern of the third series in the

Schoenberg composition. (using a meta-production rule ensures that

85

the generated string (rhytt m) is the same for both parts of the

Canon.)

" DURATIONS FOR THIRD SERIES ->
duration 2
	

3. 1.0.0)
duration 1 (tO, 	0. 0. 2. 2)
duration 3 (i), 	0. 1.0.0)
duration 4 (1.)
	

1 . 0 . 0 • 0)

The object structure generated by the grammar consists of

'abstract tokens'. The objects must be defined. For example, one

could map each of the note-objects onto one of twelve notes - eg.

'obji' 1 (C), 1 obj2' =2 (C/i), and so on. For the duration

structure, one could define the smallest duration value (eg.

'duration 2 1) as a 1/16th note. Using a 'time-counter' an 'event'

could be represented as:

OBJECT-NUMBER (MEASURE-NUMBER, ENTRY)

If the time-signature is 3/4, then "ENTRY", a variable for

'entry-time', is modulo 12, for 12 16ths per measure where the

entry-time is given as the Nth 16th note of a measure, and

"MEASURE", for 'measure-nunber' , is incremented every 12 lôths.

An event description could be generated by calling an

object-mapping routine and then a duration mapping routine.

For the third series' durations, a special mapping routine

which performs manipulations on the rhythmic values is defined.

As in the Schoenberg, the 12-note "SERIES" is divided into four

sub-groups. The first four values are output in the normal

manner. For the second sub-group the values of "MEASURE" and

"ENTRY" are reset so that the first two sub-groups occur

simultaneously in two parts. For the third sub-group, the values

IN

of "MEASURE" and "ENTRY" are manipulated so that the order of the

four notes' performance is retrograded - and the last, the 9th of

"GROUP", note's duration is tripled.

This grammar generates a large number of structures including

Schoenberg's Trio. The GGDL grammar program and the MDL

morphological mapping program used for this example may be found

in Appendix 2. The first composition generated using this grammar

and mapping program, ie. essentially a random selection from

possible generations, is given in Figure 4-3a. It is transcribed

in Figure4-3b.snd 1 -3c.

The structure generated by the grammar may be mapped onto any

defined set of 'real' objects. It would be quite possible to map

the generated structure to a representation other than that given

in Figure 14-3a. For example, it could be mapped to a format that

could be used for synthesis. Alternatively, rather than map the

12 objects of the structure onto the 12 pitches of the chromatic

scale, a set of noises could be used. In Figure ti_k is the score

of a composition generated using the same grammar that generated

the the composition in Figure 24_3, though with only nine objects

and mapped for performance by the non—standard synthesiser.

[eis
Zi

A
L?

VOICE1 VOICE2
12(1,3) 12(2,3)
10(1,5) 2(2,5)
4(1,7) 8(2.7)
1(1,9) 11(2,9)
8(1,11) 14(2,11
2(2,1) 10(3,1)
5(2,7) 7(3,7)
11(2,8) 1(3,8)
6(2,9) 6(3,9)
7(2,10) 5(3,10)
3(2,11) 9(3,11)
9(2,12) 3(3,12)
3(3,1) 3(4,1)
9(3,3) 3(14,3)
3(3,5) 9(4,5)
11(3,7) 5(11,7)
12(3,9) 6(11,9)
7(3,11) 1(11,11)
1(11,1) 7(5,1)
4(4,7) 10(5,7)
10(4,8) 4(5,8)
5(4,9) 11(5,9)
2(4,10) 8(5,10)
8(4,11) 2(5,11)
6(4,12) 12(5,12)
3(5,1) 3(6,1)
6(5,3) 3(6,3)
4(5,5) 9(6,5)
10(5,6) 1(6,6)
7(5,10) 12(6,10)
2(5,3) 5(6,3)
8(5,9) 11(6,9)
11(5,11) 8(6,11)
5(6,1) 2(7,1)
12(6,7) 7(7,7)
3(6,9) 3(7,9)
1(6,6) 10(7,6)
9(6,2) 4(7,2)
3(6,1) 6(7,1)
3(7,1)
9(7,3) •6(8,3)
3(7,5) 8(8,5)
7(7,7), 2(8,7)
6(7,9) 5(8,9)
11(7,11) 10(8,11)
5(8,1) 14(9,1)
2(8,7) 1(9,7)
8(8,8) 7(9,8)
1(8,9) 12(9,9)
4(8,10) 11(9 1 10)
10(8,11) 3(9,11)
12(8,12) 9(9,12)
3(9,1) 3(10,1)

Figure 4-3a: Data generated by the computer.

Figure 4-3: A structure generated from a grammar that includes in the
'language' it define the Schoenberg Trio of Figure 1.

I,

Figure 4-3b: 	A transcription of the data generated by the computer.

E#ItJ

I -a
a -

N 	 a r P

Figure 4-3c: An alternative transcription of the data.
'After Schoenberg' by S.R. Holtzman.

90

Figure 4-4: Score for structure generated for PDP-15 Non-standard
Digital Synthesis Instrument,(see Chapter 6) using the
grammar used to describe the Schoenberg Trio (Figure 4-2)

91

David Hamilton's "Four Canons"

In the case of this example, rather than suggest how GGDL may

have been used by composers to compose their compositions, the

work of a composer who used GGDL to compose is discussed. David

Hamilton composed and synthesised four compositions using the GGDL

composition and synthesis suite of programs at Edinburgh

University, Department of Computer Science for a BBC commission

during April—June 1980. "Four Canons" is one of the four

compositions. The other three compositions were realised in a

similar manner to "Four Canons" though using material generated

with different grammars.

In "Four Canons", David Hamilton explores the 'modalities'

created by using alternative interval systems to the chromatic

12—tone tempered scale traditionally associated with western

music. Hamilton, long interested in alternative systems of

proportions for relating frequencies, had had no experience of

computers. The use of the computer offered Hamilton the

possibility of the extremely accurate performance of arbitrary

frequencies for very short time intervals unattainable by other

means.

Intervallic systems are founded on proportionally related

frequencies. For example, the traditional untempered western

melodic scale is based on a series of proportions:.

1:1 unison

2:1 octave

3:2 fifth

11:3 fourth

5:4 major third and minor sixth

6:5 minor third and major sixth.

For "Four Canons", a number of morphemes were used in grammars to

represent frequencies related by a proportion to the previous

frequency. 	These 	morphemes 	were 	labeled 	as 	'prol ,

1 pro2' ,...'proN' , representing such proportions. A string of

frequencies could then be defined in terms of a starting frequency

and a series of proportionally related frequencies. Hamilton

defined rewrite rules to generate such frequency strings as the

basic material of "Four Canons". For example.,

C FREQUENCY STRING -> STARTNOTE, prol, pro2, pro3 proN

The strings of basic material were completely specified in

Hamilton's work. 	In the case of "Four Canons", the thematic

material was based on carefully worked out predetermined

intervallic patterns. Hamilton called such a pattern a "SPIRAL".

A complete "SPIRAL" consisted of a starting frequency,

indicated by a morpheme 'notel, note2, .. .noteM' • an overall

duration, indicated by a morpheme 'dun, dur2 durN' , and a

string of 25 proportionally related frequencies. The proportions

were inverted in certain patterns in order to ensure that the

frequencies generated stayed within certain frequency ranges. The

inversion of a proportional frequency relationship, eg. 5:9 to

9:5, results in the same though inverted interval. Spirals with

S

different characteristics could be defined by manipulating the

inversions of interval proportions in different ways and were

indicated by spiral-type morphemes ('spirall,

spiral2 spiralN'). A rewrite rule to generate a spiral could

be defined.

£ SPIRAL -> noteN, durN, spiralN, FREQUENCY STRING I

A simple crab canon structure is defined by the following rules.

Rules to Generate a Crab Canon of Spirals

C COMPOSITION -> PART1, PART2]
PART1 -> VOICE1, MELODY
PART2 -> VOICE2, €B (MELODY)

£ MELODY -> (dun, notel, OBJECT7)
(dur2, note2, OBJECT3)

(dun, noteô, OBJECT1)]
C OBJECT1 -> spirall , FREQSTRING J
C OBJECT2 -> spiral2, FREQSTRING I

C OBJECT7 -> spiral7, FREQSTRING]
C FREQSTRING -> prol • pro2, pro3, prol , pro4, .. .pro2]

Using these types of grammars, Hamilton generated various

strings of spirals. The first notes of the spirals were used to

play a melody as a 'cantus firmusT. For this, Hamilton used the

melody of a hymn tune. The durations (ie. speed of execution) of

the strings of spirals based on the cantus firmus were then

related to each other in terms of the same proportions that were

used to define frequency strings.

Hamilton used grammars to generate extended but completely

determined structures. By varying the rules, the orders of

proportions in the frequency strings, the basic note pattern of

the cantus firmus, and so on, different types of structures could

be generated and explored. However, these structures are still

94

abstract. Though the generated strings of morphemes represented

structures with carefully calculated proportions, what the

proportions actually were defined as remained, in the grammatical

definition of the structure, undefined. Given generated

structures, it was possible in the mapping program to define the

values of the proportions independently of the structures and

their generation. 	Hamilton experimented with trying different

proportions. 	He tried, for example, generating strings of

frequencies using the proportions used in the untempered western

chromatic scale (to generate untanpered melodies rather than the

traditionally tempered scales used in the performance of western

classical music) • as well as using proportions based on other

numerical relationships, such as Fibinacci series (eg. 3:1,

7:4, 11:7., etc.), a series of odd 'harmonics' (3:1, 5:3, 7:5, 9:7,

11:9, etc.) and so on. Each alternative definition required

changes only to the values of variables in the mapping program.

In Hamilton's "Four Canons", the hymn tune elaborated with

spirals required, for synthesis, the specification of 286 notes

and 256 durations. In fact, Hamilton generated strings of

somewhat more complexity. Thus, though he used the grammar in an

entirely deterministic fashion, it was possible for him to express

complex structures in a compact and convenient representation.

Variations of the structure could be easily explored by altering

the rewrite rules and variations of the structures' realisation

could be explored by changing the mapping definitions of the

morpheme-objects.

95

GGDL provided David Hamilton with a useful tool for aiding him

in composing "Four Canons". In the process of composition he was

able to investigate the potentiality of his compositional ideas by

manipulating the grammars and mapping programs, a task easily

achieved by editing the GGDL grammar and mapping definition

programs. The calculations necessary to generate a composition

based on his compositional rules could be quickly carried out by

the computer and a representation of the structure which could be

immediately performed for evaluation generated. David Hamilton

did not find the use of grammars a conceptually alien way of

representing his ideas, that is, his ideas could be readily

adopted to the GGDL representation of composition processes. He

managed, in the short period, to develop a sufficient

understanding of grammars to define structures himself using

rewrite rules, though, the programming of mapping and other

routines was done by the author with variables defining

proportions easily altered and edited by Hamilton.

Compositional Considerations

A problem for any composer or researcher using a generative

system such as GGDL is making explicit a set of rules to limit the

systems generation. The system potentially can generate an

infinite number of different compositions, most of which will be

of little interest to composers. For example, a problem David

Hamilton had was determining which of all the possible types of

proportions he could use, made compositional sense to him. The

actual effect of using certain intervallic systems was often

96

difficult to imagine and Hamilton selected between systems by

generating structures and subjectively evaluating them, rejecting

certain systems and accepting others. It was a 'trial and error'

process dependent on feedback.

David Hamilton used the grammarS , in an entirely deterministic

manner. In the case of the rules used to describe the Schoenberg

Trio, the grammar was not deterministic. For example, both the

compositions in Figures 12 and 1I.3 are generated from the same

grammar. A large number more will also be generated. The

question a composer must consider is how to limit the generation

to those compositions which he will consider acceptable. This can

be done by experimentation with a grammar, checking its output and

modifying the rules until an acceptable grammar is written - or by

rejection of output from the machine. In the former case it is

necessary to ask,. and formalise, what the differences between the

two compositions are, which is the more interesting and why.

Additional rules could be used to further specify, and limit, the

structures defined by the grammar.

The composition in Figure 14_3 is in fact the first work

generated by the grammar; it is a random selection from the

possible output of the grammar. The series generated as the basis

of the structure by chance has repeated occurences of semitone and

diminished fifth intervals, intervals a serial composer might well

compose with. This is a coincidence rather than determined by the

rules of the grammar. As an alternative one could define a

transition matrix, for example, which ensured that only certain

97

intervals occurred.

There are in the Schoenberg composition a number of

idiosyncracies. For example, the Bb tied to the last measure is

the only tied note; and in the fourth occurrence of the series in

each part of the canon, the eight note of the series is played

before the seventh. The problem arises as to the extent to which

such irregularities should be formalised. That is, should such

irregularities be considered idiosyncratic to the particular

realisation or should they be considered stylistic: are they 'ad

hoe' improvisations or irregularities consistent with a set of

compositional rules? For example, could the tied B—flat of the R6

series (last measure) be derived from a rule or was it some

idiosyncratic decision that caused Schoenberg to write it as it

is? Would it be equally suitable to tie the B natural of the last

measure of the composition in Figure 4-3? The occurrence of the

eighth element of the series before the seventh in the last series

of each voice could be described in rules -

IF GROUPCNT&4 THEN
IF OBJCNTr7 THEN

et cetera

But should this be done for all structures generated, ie. would

the rule be applicable with all series? - or does Schoenberg want

to avoid the fifth in this particular context, and sty just here?

Some of these problems are problems of 'recreating' what

Schoenberg has written and are problems for a musicologist.

However, they are also problems of the composer in formalising

what may be his seemingly irregular compositional method.

S

Another problem in formalising the composition process is

deciding to what extent to formalise it. In the case of

Hamilton's "Four Canons", the composition generated was to be

directly performed by a synthesiser. All data necessary for the

performance of the piece had to be generated from the grammar and

mapping definitions. However, in the examples generated using a

grammar that included the Schoenberg Trio in its 'language' (eg.

Figures 42 and 4_3), only the note-duration structure was

specified. The output of the machine leaves considerable room for

interpretation - the octave positioning, 	instrumentation,

dynamics, phrasing, etc. are not specified in the output. 	One

could possibly add these as part of the grammar, if rules can be

formalised, or leave the data 'interpretable'.

GGDL may be used by composers as an aid in the process of

composition. However, the system does not specify what needs to

be defined and attempts to impose as few restrictions on a

composer as possible. However, it is this very lack of

restrictions, ie. leaving the problem open ended, that may make

the use of the system difficult. Unlike in Koenig's and Xenalds'

systems, the composer must define his own orientation, specify

what it is the computer will be used for and how, and so on. The

GGDL-CAC system is intended as a general aid. However, this

generality itself may pose problems for a composer.

Summary

It is clear that generative grammars can be used to describe

99

and automate the generation of music structures. 	Generative

grammars may act as a powerful and useful aid to composers,

permitting the description and generation of many different music

languages. . The separation of the generation of an abstract

structure from its definition during the process of mapping can

also be usefully exploited. Structures generated using the same

grammar may be mapped to representations permitting performances

by different means (of. Figures 4-2, 4-3 and 4-4). Perhaps in a

more subtle manner, the mapping process may be used as in the

example of David Hamilton's "Four Canons", where a structure of

proportions was defined in the abstract independently of the

definition of the proportional values. The mapping process allows

the composer to define his compositional object.

Though grammars have been presented which describe and generate

three compositions, this is not to suggest that any compositions

could be described and generated using GGDL, certainly not easily.

Certain types of relationships are not easily described using

GGDL. For example, as the process of generation works only with

abstract objects, temporal relations, ie. relations in the

structure after mapping, are not easily accounted for during the

process of generation. Thus, though one can, as in the above

examples, express linear relationships, and even generate

countrapuntal textures where the separate voices are either

'self—synchronised' or are not strictly synchronised during

generation, it would be difficult to generate certain types of

contrapuntal textures with independent linear and vertical

harmonic relationships.

100.

Generative grammars may be used as an aid by musicologists as

well as composers. Musicologists studying the formal structure of

a composition can use grammars for its description; given such a

description its adequacy can be tested by using it for generation

and comparing results against the original. An interesting

musicological question arises when the same structure may be

represented and generated by more than one grammar; which

representation is a correct interpretation of the structure •

becomes a question of reconstructing the actual composition

process used to generate the work.

101

Chapter 5: Composing at the micro-level

An interesting possibility with a computer aided composition

system is that of organising micro-sound structures by techniques

similar to those used for macro-structural organisation. Just as

one can define a set of rules for generating relationships between

objects which are 'whole' events, one can define sets of rules for

generating descriptions of events at a micro-level. Both Koenig

and Xenakis designed programs which, using the compositional rules

they had programmed for macro-structural organisation, generated

micro-sound structures, structures of digital samples of very

short durations. The grammar system described in this thesis

manipulates abstract tokens. These can be complete sections of a

work, the notes or objects that make up a section, or the

micro-components of those objects.

In the previous chapter, it was shown that generative grammars

can be used to describe and generate different types of music

structures and that the object of the composition process can be

defined independent of the generation process. In this chapter,

the possibility of extending the application of compositional

rules to manipulate objects to describe sound structures at the

micro-level is considered..Using GGDL, one need only define

micro-objects in the mapping process. In this chapter, the

considerable advantage of the possibility of defining the object

of the composition process in a mapping definition is further

demonstrated.

102

In this chapter, how grammars were used to generate the sounds

of a composition by the author, "After Artaud" (Holtzman 1978), is

discussed. U. M. Koenig, during a visit to the Department of

Computer Science, University of Edinburgh to experiment with GGDL

(June 30 - July 12, 1980), developed some ideas on how grammars

might be used to generate symmetrical waveforms. These ideas are

also briefly looked at.

After Artaud

Rather than describe sounds in terms of sample relationships,

as in the experiments of Xenakis and Koenig's 3SF program, one

could use a parametric synthesis model for the generation of

sounds. For the composition of "After Artaud", the frequency

modulation model (Chowning, 1973) was used for describing sounds.

Using frequency modulation,. a number of parameters may be

dynamically assigned values which control the generated sound.

These are the frequencies of the carrier and modulating

oscillators, the amplitude of the carrier wave, and the modulation

index, which determines the 'depth' of modulation. The dynamic

values for each of these parameters may be represented by

envelopes.

Using GGDL, one could define a set of rules for generating such

envelopes. An envelope, for example, could be described as

consisting of an attack, a steady—state, and a decay.

ENVELOPE —> ATTACK, STEADY—STATE, DECAY

The components of the envelope could then be defined. 	The

103

envelope could, for example, be represented by a set of points

(x,y) in a Cartesian plane, representing the turning points of the

envelope. Different qualities of 'ATTACK' could then be described

in terms of the gradient between the starting point of the

envelope, eg. (0,0), and the point at which the steady state of

the envelope begins. For example:

ATTACK -> steep . moderate . shallow]

Initialising the first envelope point to "XzO" and "YrO", a steep

attack could be described as 'x + a small increment' and 'Y + a

'large increment':

X = X + random(200,400)

Y = Y + randm(2000,3000)

with an envelope window of, say, 11000 by 4000. 'Steep' refers to a

class of attacks which may be realised within a range of gradients

(see Figure 5-1). Similar rules could be defined for generating

different types of steady-states and decays.

For the composition of "After Artaud", a grammar was defined

for generating different types of envelopes and then, at a higher

level, rules were given for combining different envelopes for the

different parameters of a frequency modulation representation of a

sound. Different types of envelopes were defined by their quality

of attack, steady-state and decay. For example, one type of

envelope might have a steep attack, short steady-state and slow

decay whilst another might have a shallow attack, long

steady-state and rapid decay. Different types of sounds are

generated with different combinations of envelopes. For example,

bell sounds have for both their modulation index and amplitude

104

ox.

flx,I

icm 	20cxD 	3000 	4000

Figure 5-1: 	'Steep' refers to a class of attacks which may be
realised within a range of gradients.

105

envelopes, envelopes with very steep attacks and very gradual

decays.

An 'abstact-structure' , the structure of "After Artaud" derived

from an Artaud poem, was represented as a string of non-terminals

each representing a single sound. The non-terminals were

rewritten as a string of terminals representing a set of

envelopes, defined as (x,y) turning points, defining a sound that

could be synthesised by frequency modulation synthesis. For each

unique sound-object in the macro-structure, ie. non-terminals that

occurred only once, the computer generated a distinctive set of

frequency modulation characteristics - this was a unique set of

carrier frequency, modulation to carrier frequency ratio and

amplitude and frequency modulation index envelopes. For sounds

that were repeated the computer generated the same terminal

representation of a description of the sound. However, during the

mapping of the terminals, different values which would still have

the same characteristics were generated. If a sound recurred in

the macro-structure (eg. 'obji' in 'obji, obj2, obj3, obji'), each

occurrence of the sound was realised differently. For example, if

the modulation index of 'obji' was described as 'steep' attack,

'short' steady-state and 'shallow' decay, the actual increment

(ie. steepness) for the envelope for each occurrence of 'obji' was

recalculated each time 'obji' was mapped - ie. realised - as a

'real' frequency modulation sound object. One could therefore get

two modulation index envelopes with the sane characteristics

(perceptually identifiable as the same) yet slightly differing

(see Figure 5-2). Every time a trumpet plays a C#, every time I

106

Figure 5-2: 	Two envelopes with the same characteristics yet
slightly differing: e.g., steep attack, short
steady-state, and shallow decay.

107

pronounce the phoneme [ae], and every time the machine synthesises

'obji' , slightly varying envelopes for parameters are generated

though the object still remains distinctive. It is still heard as

Cl!, Eae] or 'obji'.

Generating Symmetrical Waveforms

During his experiments with GGDL, Koenig was interested in

seeing what sorts of structures could be easily expressed using

grammars. In some of his work, he tried to generate descriptions

of sounds in terms of sets of amplitude and time points. His 55?

program (Berg 1979) also describes sounds in terms of amplitude

and time points, though symmetrical waveform structures such as

those Koenig defined using GGDL could not easily be generated

using 551'.

Using meta-production rules, he noted that one could generate a

fixed object from a set of rules and then perform transformations

on the object. The generation of a symmetrical wave could then be

represented as a generated structure of time and amplitude points,

followed by the same structure pivoted (ie. inverted) around a

zero-crossing point with the order of the points reversed. In

GGDL, a period of a symmetrical waveform could be represented as a

structure followed by itself inverted (€1) and reversed (GB)

To generate symmetrical waveforms using GGDL, 	Koenig

independently generated an amplitude structure and a duration

structure for a period of the wave, where each of these structures

108

was a fixed object followed by itself inverted and reversed. The

amplitude and duration structures were each generated using a

metaproduction rule. The amplitude structure was generated using

a selection procedure that permitted the definition of a dynamic

mask over possible selections similar to the 'Tendency' procedure

Koenig defined in his own composing programs (cf. Chapter 2). A

set of rewrite rules defined by Koenig which could be used for

generating symmetrical waveforms follows.

Rules for Generating Symmetrical Waverforms

It RANGE -> II N II C TENDENCY >
pi, 	P2, - P3, . p4, . p5, . p6, 	P7. . P8, 	P9, 	plO, . p11,
p12, , p13, . p14, . p15, . p16, . p17, . p18, . p19, 	p20, 11

" SET -> 1/ N #
t1, 	t2, - t3, . t4, . t5, . t6, 	t7, . t8, 	t9, 	tb, . tll,
t12, 	t13, . t1 14, . t15, . t16, . t17, . t18, . t19, . t20,

I PERIOD -> @M(AMP)(TIME)
£ AMP -> P0, GROW, i(PO, B(GROUP))]
GROUP -> MICE]

I TIME -> tl,SET,€B(tl,SET)

Examples of some of the waveforms generated using this grammar are

given in Figure 5-3.

Summary

GGDL may be used for the definition and generation of

micro-sound structures as well as macro-sound structures. The

components which describe a micro-sound structure, like those used

in the previous chapter for the description of macro-sound

structures, may be arbitrarily defined. One can compose

envelopes, sound descriptions in terms of frequency modulation,

waveforms, and so on.

109

Ii

C

Fq £

Figure 5-3: 	Symmetrical waveforms generated using GGDL.

110

F

Figure 5-3: Symmetrical waveforms generated using GGDL.

If half of a symmetrical waveform is defined by a
'GROUP' of points in a Cartesian plane, the other
half may be generated by fteflebting' the points
around a zero crossing. The qualities of only one
half of the waveform need to be defined.

[WAVEFORM AMPLITUDE POINTS + P0, GROUP
@I(P0, @B(GROUP))]

[GR0UP- ... J

In the examples, one half of the waveform has been
defined by

two (positive) points
two points in a restricted range
five points

IL ten points
ten points in a restricted range
twenty five points
twenty five points over fUJ.l positive and
negative range

nfl-

Using GGDL it is possible therefore, to use the same generation

rules independent of the compositional objects defined in mapping.

This has interesting compositional possibilities. For example,

both a macro-structure and the micro-components that define that

structure may be composed by the same rules. Such possibilities

are of interest to many composers and a CAC system clearly may

have a greater attraction if it is sufficiently flexible that

composers may explore such possibilities.

The work of Koenig, in this respect, produced some interesting

results. It demonstrated that symmetrical structures could easily

be expressed using GGDL. In the examples in this chapter, such

structures were generated with a selection procedure that could

also have been used to generate macro-compositional structures.

Similarly, the representation of a waveform as a structure and its

retrograde inversion is a commonly used macro-structural object,

eg. a series or theme and its retrograde inversion. In GGDL,

either could be generated from the same rules, for example, those

defined by Koenig, and only the mapping program would need to be

changed to redefine the compositional object.

112

Chapter 6: An Automated Digital Sound Synthesis Instrument

In this chapter, an 'automated non-standard digital sound

synthesis instrument' (Holttnan 1978b, 5979) is described. The

instrument is a digital synthesiser which generates sounds by a

'non-standard' method of synthesis. It may be seen as functioning

on two major levels: one, as a sound synthesis process, and two,

as a syntactic structuring process. The synthesiser, supported by

a PDP-15/ 110 (DEC 1969) with facilities for D-A conversion, was

implemented in software, including a 'programmable' grammar for

the automatic generation of non-standard sound descriptiOns and a

special operating system for executing such descriptions

concurrently - the descriptions are in the form of computer

programs.

In the same manner as standard descriptions of sounds were

generated by grammars in Chapter 5, the 'automated synthesis

instrument' generates non-standard descriptions of sounds using a

grammar. In most cases of digital synthesis, ie. standard digital

synthesis (see below) , sound descriptions are used to assign

variables to a function expressed as a computer program; the

execution of the program generates data-samples representing that

sound. In the case of the non-standard synthesis method described

in this chapter, the description of the sound and the program to

generate data-samples are one and the same. That is, sounds are

described in terms of computer programs generated automatically

using a grammar.

113

Chapters k and 5 demonstrate that generative grammars may be

used by composers to automate their composing process at the

macro- and micro-levels. Generative grammars and computers were

used as tools to facilitate an otherwise tedious process. This

chapter describes a 'tool' for composers, ie. an automated

non-standard synthesiser, developed as a direct consequence of 1)

using computers to synthesise sound and 2) using generative

grammars to compose music structures.

Standard vs Non-Standard Synthesis

Standard synthesis systems such as Mathews' (1969) MUSIC V

provide facilities for working 'top-down' to specify sounds in

terms of high-level acoustic models. Complex calculations are

used to simulate these models and generate digital samples

representing the specified sound. With the exception of cases

where these calculations are performed using specially designed

hardware (Di Giugnio 1977) • calculations are not in 'real-time'

and a long list of signal samples is stored; synthesis

subsequently consists of the transfer of stored samples to

digital-to-analog convertors (DAC5)

The sound synthesis instrument described in this chapter rests

on a 'non-standard' or instruction synthesis approach to digital

signal generation. Based on digital processes, synthesis is built

around a technique of applying sequences of virtual machine

instructions to samples moving through an accumulator register.

Instruction synthesis samples are related only in terms of the

114

virtual machine instructions that have been used to generate the

samples. For example, in such a system, one sample may be related

to the previous two samples by an exclusive-or instruction. These

relationships, ie. the programs of virtual machine instructions,

are defined without reference to some acoustic model or function.

The synthesis possibilities are considered 'idiomatic' to the

extent that the technique is limited and 'tuned' to the

architecture of a particular cpu which supports the virtual

machine. The same non-standard description of a sound when

executed by different machines with different word sizes,

different implementations of multiplication or shifting, etc. may

generate a different set of samples representing that sound. If

the supporting machine can execute the virtual instructions in

'real-time', the durations of the samples may be dependent upon

the instructions required to generate them. The sample time will

be a result of the actual program structure, that is, the program

text required to generate a sample, and the machine speed.

In the case of the implementation described in this chapter,

the PDP-15/40 (DEC 1969) is an 18-bit computer with an instruction

set which includes various arithmetic and logical operations. An

operating system has been designed and implemented to execute two

non-standard functions simultaneously in 'real-time'. There is no

external clocking and the sample time is dependent on the program

structure of the sound description and the machine speed. When

two functions are executed concurrently, the sample times of

samples generated by each function are affected by sample times of

115

the other function.

Instruction synthesis is non—standard in the following senses:

first, the noises this technique tends to generate differ greatly

from those of the traditional instrumental repertoire and even

from much electronic music; second, in this technique, sound is

specified in terms of basic digital processes rather than by the

rules of acoustics or by traditional concepts of frequency,

overtone structure, and the like.

Sound synthesis programs such as MUSIC V exemplify the standard

approach. With the instruction synthesis methodology, research is

neither abundant nor well—documented. Paul Berg's ASP (1975) and

P1112 (1979) implement an instruction synthesis approach, as does

the system described here. From a slightly different approach,

relating samples to one another by means of a hierarchy of virtual

machine instructions is Koenig's $5!' (Berg 1978b, Banks 1979).

Yet another approach which departs from standard

frequency/overtone acoustic models has been implemented by Xenakis

(1971) using stochastic techniques to generate samples.

A premise fundamental to Berg's and our experimentation is that

the programs should

"explore the idiomatic capabilities of the computer in the
realm of sound synthesis.. .systems where the computer is
essential for a reason other than the magnitude of the task.
Where it could contribute to production of new sorts of sounds.
Or processes for producing sound. Or at least new
representations of sound" (Berg, 1975).

116

Berg's ASP is implemented on a PDP-15/20 (DEC 1969) at the

Institute of Sonology, Holland. Using the machine instruction set

of the PDP-15, Berg wrote MACRO-15 (DEC 1969b) assembler programs

in which sequences of words, ie. samples, are generated to produce

noise timbres. Each string of samples so produced will, given

certain constraints discussed later, produce a different waveform,

ie. sound, which may be either periodic or aperiodic. Given small

programs to generate sounds, they are executed in different orders

to produce a continuum of juxtaposed timbres and silences. Rather

than starting with an idea of a sound and then simulating it, in

the ASP program it is by programs of instructions that a sound is

described,

The ASP program was written 'manually' in MACRO-15 assembly

language. Using a generative grammar, a synthesis process was

developed in which small program texts for the synthesis of sound

are automatically generated.

The Program Generator

The Program Generator is a set of GGDL programs, ie. a grammar

program and a mapping definition program. In the grammar program

(see Appendix 3), a set of values is assigned to variables in the

control mechanism of the grammar and programs of virtual machine

instructions are then automatically generated. A mapping program

'compiles' the virtual machine code to executable machine code for

a PDP-15/40. By changing the mapping program, the virtual machine

instructions used in this specific system could be simulated

117

(possibly not in real-time) by other actual machines; the same

virtual program executed on different machines might generate

different sounds.

The grammar and mapping definition programs of the Program

Generator together generate texts (in compiled machine code)

which, when executed, create distinctive sounds. These texts are

called 'Functions': a series of machine instructions which will

access and manipulate data structures (via the accumulator) and

place computer words (numbers) in the accumulator which are to be

sent to a digital-to-analog convertor. The series of instructions

in a Function is finite and of a fixed ordering. In the

generation of samples, the sequences of instructions in a Function

will be repeated, since the last instruction of a Function is

always a 'jump to' the first instruction of the Function. This is

ensured by a rule in the grammar by which a well-formed Function

is defined as ending with a jump to the first instruction of the

Function; this is necessary if the execution of the code generated

is to yield continuous sounds of unspecified duration. Depending

on whether the instructions include assignments to internal

variables or whether the instruction RANDOM is used, a Function

may produce either periodic or aperiodic waveforms.

In generating sound-producing text the Program Generator first

determines the number of constants and variables a Function will

use. Given these data objects, a Function, consisting of

sequences of instructions which will produce samples, is generated

by a grammar. In the grammar of the Program Generator, 12'

118

primitive instructions, terminals in the grammar, have been

defined. These are:

 +
 - arithmetic operators

 *
(1') /

 LAC memory retrieval operator
 RANDOM random number generator operator
 CONJUNCTION
 ANTIVALENCE
 DISJUNCTION
 EQUIVALENCE logical operators
 IMPLICATION
 EXCLUSION

The grammar is used to generate sequences of these instructions to

form 'statements'. 	Statements may be of two types: 'assignment

statements' and 'conversion statements' . 	Functions consist of

sequences of statements.

In an assignment statement, an expression calculates a binary

value which is assigned to a variable in memory. In a conversion

statement, a value calculated by an expression is sent out as a

sample to a DAC. An example, given the variables Vi, V2, V3 and

the constants Cl and C2, of an assignment statement is:

Vi r Ci 	C2 + V3 CONJUNCTION V2

where operators are applied left-to-right. A conversion statement

for sending a sample to a DAC is:

DAC <- V3 + C2

Memory and random instructions are in themselves expressions, eg.:

DAC <- C2 (loads the DAC with the constant C2)

or

'/2 = RANDOM (assigns a random value to the variable V2)

119

Functions are written in two passes. 	First, a grammar (see

Appendix 3) is used to generate a virtual machine instruction

text. Then, the virtual text is 'compiled' into machine code

using the mapping definition. As text is generated and mapped,

lists of all the Functions, statements and data are maintained and

later used by what is called the 'Performance Process' for the

execution of the Functions.

The Grammars and Semantic Constraints

The possible programs (Functions) generated automatically using

grammars must be constrained if, when executed, they are to make

'sense'. The grammar of the Program Generator manipulates various

types of objects with different properties and values. These

include, for example, statements, data structures and primitive,

ie. virtual, operations. The Program Generator must embody some

understanding of the effects of certain syntactic relationships to

write syntactically correct and semantically 'intelligent'

programs.

For example, if in a Function an assignment statement assigns a

new value to the variable Vi:

Vi r Vi + 1

such an assignment may be said to have semantic value only if the

assignment has some resulting effect in the program. If, for

example, Vi was assigned another - value before it was applied

elsewhere, eg.:

Vi = 32

1 I

the previous assignment would be semantically 'senseless'. 	The

generation of such cancelling statements can be prohibited by the

rules of the grammar. Constraints may, for example, be applied to

the selection of the variable to which an assignment is made in a

selection procedure. Though the above sequence of statements may

be syntactically correct according to the rewrite rules of the

grammar, the generation of the semantically senseless constructs

may be avoided using a control function. (See the discussion of

syntagmatic vs. paradigmatic relationships in Chapter 3.)

Similarly, control functions may be used to prevent the assignment

of an object to itself:

Vi = Vi

Rules of the grammar may also impose a semantic consistency

when generating the expressions of statements. For example,

rewrite rules may prohibit certain sequences of logical

operations. The expression,

A CONJUNCTION B DISJUNCTION A

results in A, ie. the same value it began with. 	This sort of

'senseless' instruction sequence could be prevented by prohibiting

logical operators to follow one another, though this also

prohibits many sensible strings. A better rule, but considerably

more difficult to implement, would prohibit only the sequences of

complementary logical operators with certain arguments in common,

ie. those that will cancel the results of the first operation.

There are also questions of a different sort that must be

considered. 'Sensible', in final analysis, may be interpreted in

121

terms of the perceptible results of the program texts. 	The

perceptual processes which allow intelligibility of communicative

systems are an overall constraint on all parts of a sound

producing system (Holtzman 1978). For example, given a structure

of relationships between a set of noises described by Functions,

the Functions, when executed, must sound distinctive if the

relationships are to be heard. For each Function to generate

distinctive sounds, it must have distinctive features in the

program text by which it is described. Each function is generated

by a grammar and may be considered as an utterance in the language

defined by the grammar. Ideally, the grammar from which a

Function is generated would define a language whose utterances

would be disjoint from any other Function-generating grammar.

Provided a different grammar is used for the generation of each

Function, these will have unique syntactic features which generate

distinctive waveforms or sounds. Depending on what distinctive

qualities the grammars have, the different waveforms generated may

also be perceptually distinct.

In the case of the non-standard synthesis instrument described

in this chapter, a 'skeletal' grammar has been defined for which a

set of values for its variables must be defined to complete the

grammar. If different values are assigned to the variables,

distinct languages may be defined by the different 'complete'

grammars. The variables of the grammar control a number of

syntactic features. These include: the number of statements in a

Function, permissable sequences of operations, which operations

are to be used, the ratio of variables to constants (which

122

determines the periodicity of the waveform) , and so forth. 	The

grammar, written in GGDL, may be found in Appendix 3.

The Performance of Functions

What has been described so far is a system that composes

individual sounds. These sounds are described in a non-standard

manner in the form of Functions. The execution of these Functions

produces sound.

'I

An operating system for the PDP-15/40 was designed and

implemented to permit the non-standard synthesis instrument to

synthesise two 'voices' simultaneously (see Figure 6-1). Each

voice is synthesised by running separate 'performance processes'

concurrently, each of which controls the execution of Functions.

In addition, processes for clocking the performances of the voices

and communications with the control processor, the VAX-11/780 (see

Chapter 7), are run concurrently with these.

A 'dispatcher' determines which process should be executed.

Initially running an idling process, other processes are activated

given instructions received from the control processor which are

handled by the communications process. The communications process

may be instructed to activate a process to write Functions or the

processes required to perform Functions. If the communications

process is unable to execute the instructions it responds to the

control processor with an appropriate error message which will be

conveyed to the user (see Appendix k).

123

Figure 6-1: Operating System for PDF-15/40

Non-standard Synthesis Instrent

C
4'-,

I

Performance processes (Figure 6-2) control the execution of

Functions and are indirectly controlled by the clocking process.

The clocking process monitors the 'real-time' elapsed with

reference to an 'event-queue' which specifies which Functions are

to be performed in which voices, ie. by which perfoSance process,

for a given duration. The clocking process checks the time of the

next event in the event-queue every 50th of a second (ie. there is

a clock interrupt every 50th of a second) and, if necessary, will

inform the performance processes of required changes in the

execution of the Functions. At the end of the event-queue, the

clock process releases, ie. terminates, the performance processes

and itself.

Clocking and communications processes are activated by

interrupts, suspending the execution of whatever process was being

executed at the time. Interrupts are handled serially; that is,

interrupts are disabled whilst an interrupt is being handled.

The performance processes carry out a number of steps

illustrated in Figure 6-2. When executing the two performance

processes concurrently, the dispatcher switches between them using

a 'round-robin' or 'flip-flop' scheduler. The performance

processes are switched between whenever a sample is generated. A

performance process will execute a number of assignment statements

and one conversion statement (generating a sample) . The time

required is dependent on the execution time of the instructions in

the statements. When a sample is generated, the performance

process is 'put to sleep' and the other performance process is

125

The Event-Queue

Performance Data
Ca list of addresses of Functions
to be performed, their duration
and voice selection)

Function # dur voice

Function # dur voice

Function j dur voice

(1)
get data

Function #dur voice I(

get data

generate sample

ACC • DAt

(6) perform further?

YES generate next 	yes
sample

NO get next pertorm.
data

no data left exit

deposit one sample 	

(5) send 	ple
Data from
Structure 	

get 	 (3)
data Function I

for

	

Act to DAt

 Oist of text) 	
in ACC 	ienabie)

Function i
(variables, constant 	

ACC
) 	

assign
variables

DAt

Figure 6-2: The execution of Functions by Performance Process

1')

Figure 6-2:. The execution of Functions by Performance process

i) An event-queue defines a performance by the instrument. On significant
clock ticks, the clocking process passes data for the execution of a
Function to the relevant performance process.

The performance process passes control to a specified Function. The
Function is executed until it generates a sample.

The sample is left in the accumulator.

The Function returns control to the performance process.

The performance process sends the sample to a D-A convertor. Each
performance process is associated with a convertor.

The performance process determines whether the same Functions is to be
further executed. It is at this point, in this implementation, that
the performance process puts. itself to sleep and the despatcher activates
the next process on the queue. (See Figure 6-1)

127

activated. 	When reactivated, the execution of the Function

continues with the statement following the previous executed

conversion statement unless the process has been informed by the

clocking process that execution of another Function should begin.

Clocking and communications processes are activated by

interrupts, suspending the execution of whatever process was being

executed at the time. Interrupts are handled serially; that is,

interrupts are disabled whilst an interrupt is being handled.

Context of Functions

In a composition, the sounds described by Functions would be

integrated into a hierarchical system of syntactic relationships.

Given some number of sound-producing Functions, these may be used

as the 'content' of an arbitrary structure. This structure is

defined by performance data, an event-queue to be used by

performance processes, which determine the relationships between

Functions (ie. sounds), their durations and so on.

The non-standard synthesiser may be directly interfaced with

the automatic composition software described in Chapters 3 and 7.

The composition process using the 'automated non-standard

synthesiser' may then be seen as part of a hierarchical

semantic-syntactic structuring process (see Figure 6-3).

Specifically, by the definition of a grammar giving semantic and

syntactic rules for ordering virtual machine instructions, a

collection of Functions for producing sounds are generated. At

128

A
larger 	larger N larger

structure 1 structure 2 structure

//T",\
F-Phrase 1 F-Phrase 2 F-Phrase n

A~\
-unction 1 Function 2 Function n

'Nn

S-type 11 12 13 54(1 12\\

A
var 	assign 	 output-to-DC

Figure 6-3: The description of a south structure PerfO=ed by tbe non-standard
synthesis instrument is hierarchical. The sounds themselves are
described by Functions t-th consists of statements (2) '.thicth in
turn consists of strings of instructions M. statements either
assign values to variable locations or output ttErt to D-A converters.
The sounds are structured to form lrger musical structures.

129

the lowest level, individual instructions are ordered to form

expressions, at a level higher, expressions are used in

statements. Statements are ordered to define Functions. Given

some number of sound—producing Functions, they may be used as the

'content' of an arbitrary abstract structure.

Using, for example, grammars. Functions are ordered to form

phrases of Functions; the phrases, each generated by a distinctive

grammar to create a perceptually distinct pattern, are in turn

ordered to form large—scale syntactic structures. Using a grammar

defined in GGDL for composing a structure consisting of nine

distinctive sounds, the tokens (morphemes) representing these

sounds could be mapped to non—standard synthesis generated

Functions (see Figure 4).

At all levels of the system, the generation of structures may

be determined by a definition of a "language". In the case of the

'automated non—standard synthesis instrument' • the user controls

the process of sound (synthesis code) generation by initialising

the control variables of the grammar. At the level of instruction

synthesis code generation, variables determine what virtual

machine instructions may be used as 'terminal tokens' and how they

may be ordered. For a fuller description of the control of the

synthesis code generation, see Appendix 3.

Summary

Chapters 4 and 5 demonstrate how GGDL may be Used to generate

130

both macro- and micro-sound structures. 	The 	'automated

non-standard sound synthesis instrument' is a synthesis technique

working at the micro-level and is a direct consequence of using

grammars to describe micro-sound structures. It demonstrates that

the use of generative grammars and an automated CAC system may, in

addition to facilitating composers in the composition process,

open new possibilities in composition that could not have been

arrived at without such a system.

131

Chapter 7: The System Configuration - An Implementation

It was proposed that generative grammars could usefully aid

composers by providing a means of automating part of the

composition process. A computer aided composition system based on

generative grammars was designed and implemented to investigate

if, in fact, generative grammars could usefully aid composers.

This chapter describes the system implemented at the Department of

Computer Science, University of Edinburgh.

The core of the system is two facilities. 	These are 1) a

facility for formally and explicitly defining the grammar of a

music language, ie. the GGDL programming language 2) a facility

for using GGDL language definitions to automatically generate

utterances in the specified language, ie. the GGDL.-Generator.

Using the GGDL language and GGDL-Generator one may generate

compositions.

However, even if the process of composition is automated, if

using the computer and evaluating and transcribing compositions

automatically generated remains a tedious process, composers will

not find such a facility a useful aid. 	On its own, the GGDL

composition generation software would be awkward to use. 	When

composing, most composers generate working material • fragments of

a musical structure, and then evaluate and rework the material,

using it to construct larger music structures. The composition

process involves feedback and iteration. A computer system to aid

a composer should therefore provide _an interactive environment

132

which not only facilitates the generation of music structures but

facilitates the evaluation of generated structures as well.

A suite of programs was implemented to support the GGDL

compositon software. The suite, referred to as GGDL-CAC system,

was designed and implemented to permit the generation of music

structures using the GGDL composition software and the evaluation

of those structures through performance or, in some cases, visual

inspection. The suite of programs was designed to permit the

editing of structures as well so that the structures generated

with grammars could, if desired, be altered independent of the

grammar generation and mapping processes.

The GGDL-CAC system was implemented on a network of computers.

Facilities at the Department of Computer Science were such that

certain tasks could be best performed by different processors, due

to hardware and software demands of the different tasks. In this

chapter, the suite of programs that have been implemented to form

the GGDL-CAC system are described. These include the GGDL

compiler, and GGDL-Generator, the synthesis facilities and

graphics editor. The configuration of the implementation is also

described.

The GGDL Programs

The core Of the GGDL-CAC system is the facility to

automatically generate music structures in a language defined by a

generative grammar. A compiler was implemented, the GGDL

1

compiler, for the compilation of both GGDL generative grammar

definitions and morphological definitions. (Cf. Chapter 3). The

compilation of a GGDL program generates an object code for

execution on a virtual machine, the GGDL-Generator. A GGDL

language definition is sufficiently explicit, and formal that the

instructions of the program may be executed to generate statements

in the defined music language.

Like 	a 	compiler-compiler 	(Feldman 	1966, 	1968), 	the

GGDL-Generator accepts a definition of a language and then

translates statements made in that language to another

representation. Just as a compiler-compiler may be used to

translate a programming language.to a machine executable format,

ie. an object or machine code, the GGDL-Generator uses a language

definition to translate statements consisting of terminals and

non-terminals to statements consisting only of terminals. The

string of terminals generated may then be mapped to a specified

format. However, compilation is (generally implemented as) a

deterministic process which, given a program to be compiled or

translated, will always generate the same translation of a

program. With the GGDL-Generator, the rewriting of non-terminals

by a set of rewrite rules which define the syntax of the object

language is controlled by user-specified control-functions and

procedures which need not be deterministic. The control

procedures are defined in a high-level programming language which

the GGDL compiler translates to the machine code of a virtual

machine. The execution of the code is simulated by the

GGDL-Generator.

134

Thus, a GGDL 	program defines 	a language. The 'language

generator' accepts 	the language definition and generates

utterances in the defined language. To generate structures using

the GGDL language, one must go through several stages.

One must define a language and a set of mapping rules in

GGDL. Files will be prepared with a standard editor. The

language and mapping definition files will be compiled. The

compiler may then be run with a GGDL definition file as

input and will generate, if there are no compilation errors,

an object code that may be executed on a virtual machine,

the GGDL-Generator.

An initialising string must be prepared. This again will

be done with a standard editor. 	The file prepared will

consist of a string of non-terminals and possibly terminals

(in the grammar defined in the GGDL grammar program)

The GGDL-Generator program may be run. 	This program

requires three inputs: 1) the string initializing

generation, 2) the compiled GGDL language definition, 3)

the compiled GGDL morphological mapping definition. (See

Figure 7-1

The GGDL-Generator passes through three distinct phases of

generation. Firstly, the string for initialising generation is

rewritten. If there are no non-terminals the string will not be

altered. Secondly, the rewritten string undergoes

135

I 1trtho1ogicai GGDL
(Users)) 	 I 	(Users)

program \ Defiltion

GL 	 a
Ciler 	 CS

(Users) StrLicture
Iii-i1iatia ' 	Rules

/

:atiai

I Cattcnst
I-

-

ica.1.
Rules
CtxjaSt

Figure 7-1: The GtL Programs

136

transformational processing where structural change markers will

initiate transformations. Lastly, the string, transformed, is

mapped into its final format according to the mapping rules. The

output of the GGDL-Generator program, is the generated structure

(in the defined language) in the data-format described by the

mapping program; output may be formatted for Music V (Mathews

1969) note cards, data for frequency modulation oscillators, a

score editor, the non-standard synthesiser, transcription, etc.

Alternatively, the GGDL-Generator may be run with an empty

input stream for either the 2nd (GGDL grammar) or 3rd (GGDL

mapping definition) input stream. In the case where no mapping

program is given, the representation of the structure by abstract

tokens generated with the phrase-structure rules is output to the

first output stream. The string is output before transformational

processing as, if the '@T' or '€1' transforms are indexed, the

mapping program is required for the definition of their relative

ordering. Where no GGDL grammar program is given, it is assumed

that the first input stream will consist of a string of terminals

and structural change indexes only. The GGDL-generator, in this

case, performs transformational processing and maps the string to

the specified format, generating the mapped string as output. By

these means, one may generate an abstract structure using a given

grammar and then map the same structure by different morphological

rules, for example, for different synthesis instruments.

The GGDL-Generator allows, in addition to the first output

stream reserved for the program output, a second or possibly third

137

output stream to be indicated as diagnostics files for monitoring

the generative process. These consist of the string at various

stages of rewriting and transformation and other diagnostic

information that may be useful in debugging COIN.. programs.

Examples of how the programs are invoked on the VAX implementation

are given in Appendix k.

Inspecting Compositions

Using the GGDL language and GGDL-Generator one may generate

compositions. These may be written for traditional instruments

or, as often will be the case with composers inclined to use

computers, for some means of electronic sound synthesis. The user

environment for a composition system should permit the easy

examination of structures generated with automatic composing

software. To this end a configuration of computers was designed

and implemented to permit not only the generation of compositions,

but sound synthesis for aural feedback and, in some cases, the

possibility of visual inskection.

The synthesis facilities available are limited but may be

useful even in the case where the composition system is used to

compose instrumental music as it provides at least some aural

feedback, if only very sketchy. This is especially needed where,

for instrumental work, the output of the computer is not in

traditional graphic form, ie. a score, that can be immediately

interpreted but rather is generated in some alpha-numeric

representation that requires laborious transcription. By changing

138

only the mapping process, but not the composition's structure, it

is possible to receive from the system some quick aural feedback

about the results, and, when satisfied, to then map the structure

to some alternative format.

The hardware available for sound synthesis at Edinburgh was

limited. The only available digital-to-analog convertors were on

a PD? 15/40 (DEC 1969), which had no high-speed clocks to

facilitate timing of sample conversion. This made it impossible

to interface the GGDL composition software with a synthesis system

allowing the synthesis of very complex sounds. However, as, at

present, most complex sound synthesis may require several, hours of

calculation for the performance of even a few minutes of music, it

is done outside of real-time. The dedication of a processor as

powerful as the PD? 15/40 does have the advantage that it may be

used for real-time synthesis with immediate response.. The PD?

15/40 was configured in a system in which one could, whilst

composing, conveniently monitor compositions generated. A

structure could later be generated in a format suitable for

transcription to a score for traditional instruments, or for a

considerably slower but more complex form of synthesis permitting

the synthesis of more acceptable sound output, such as MUSIC V.

1) Though MUSIC 4SF (Howe 1975) has been implemented on the
Department of Computer Science's VAX 11/780 computer, the samples
generated by the program cannot be properly converted on the POP
15/10. Because the Deparment of Computer Science's PDP-15/40 has
only 32k words of core memory, which at sampling rates of 20,000
hertz, means only about two seconds of sample data may be stored
in core memory, some form of bulk storage is required. However,
reading stored samples there is no method of accurately timing
samples as, on the PDP-15/40, there is no fast clock to time
sample conversion and the sample-times cannot be accurately timed
using a fixed loop of instructions as bulk storage devices such as
magnetic tape drives or disks steal memory cycles to read data
into main memory.

139

It is possible with the synthesis software implemented on the

PDP-15/40 to synthesise polyphonic structures where one may

specify the frequency, duration and waveform of each sound event'

in an 'event queue'. It is also possible, though only with

monophonic synthesis due to the overhead required for calculations

in real—time, to specify an envelope for each sound event. In

addition, one can perform 'non—standard' synthesis on the FDP-15,

which is discussed more fully in Chapter 6. The event queue may

specify changes between the methods of synthesis.

A number of graphics programs have been written to facilitate

the definition of waveforms and envelopes. These use Tektronics

terminals equipped with cursors and storage scope displays. Using

a graphics editor implemented as part of the system, it is

possible to define a waveform or envelope interactively as a set

of points on a Cartesian plane using a cursor or text commands.

Up to four waveforms and/or envelopes may be displayed and edited

at one time. Other graphics programs are used to display

waveforms that have been defined by other means and are not

represented in a format compatible with the graphics editor.

The suite of programs which comprise a set of complementary

aids for composers have been implemented in a fashion which would

permit the easy integration of additional programs. Graphics

programs and data for synthesis represent waveforms, envelopes and

performance data in a shared format so that the programs are

compatible. All files are kept as alpha—numeric representations

14

that may be edited with a standard text editor or easily

integrated with other software that may be written.

The System Configuration

The Edinburgh GGDL caa position/ synthesis system presently

consists of two computer processors interconnected to permit the

parallel performance of tasks. These include the generation of

data required for performance, the performance, ie. synthesis, of

sounds, and the control of 'message' transmissions. The system is

designed with one of the processors, the VAX 11/780 (DEC 1977),

acting as a main control processor and the other, the POP 15/140,

as a subordinate synthesis instrument. The system was designed as

a 'star' configured network (Figure 7-2) to permit the parallel

performance of generated music structures by a set of subordinate

instruments, ie. synthesisers. At present, only one branch of the

star has been implemented.

For the CAC system described in this chapter, a special

operating system was designed and implemented for the

POP-15/140. * The operating system was designed to permit the

concurrent execution of several processes including processes for

sound synthesis, which, due to real-time constraints have special

1) A detailed description of part of the operating system of the
PDP-15/40 is given in Chapter 6 with reference to the 'automated
non-standard digital synthesiser'. The design of the complete
operating system is essentially the same (see Figure 6-1). There
are several more performance processes which may be activated for
different types of synthesis, eg. direct-wave synthesis, or
synthesis with envelope shaping, and the clocking process is
somewhat extended to handle the timing and inter-process
communication required by the additional performance processes.

141

Future
Extensions

Figure 7-2: The System Configuration

'FL
4 A 1

I

demands, and processes for handling communications with the VAX

11/780. Routines for handling communications protocol were

written for the VAX 11/780 using the system I-a, though, given

more subordinate instruments, communications and the accessibility

of the system would be improved by using a dedicated control

processor. The control processor's operating system could be

designed to permit the concurrent execution of 'conversations'

with several instruments, each conversation associated with a

process, as well as the execution of user processes. The

communications between the VAX 11/780 and the PDP-15/40 take place

over a direct connection using the Edinburgh Department of

Computer Science communications links (Tansley 1977). With

several subordinate instruments, message switching could possibly

use an Ethernet (Metcalfe 1976).

With the present VAX-PD? 15/40 configuration, processes are

only run serially. Communications protocol are such that the PD?

15/40 will only accept a message immediately if the message is

either an I abort' , which can be determined from the 'request to

send message' header transmitted by VAX, or the PD? 15/40 is not

occupied with another activity such as performing synthesis. This

ensures that synthesis is not audibly disrupted by communications.

However, though the operating system designed for the PD? 15/40

allows the control processor (VAX) to interrupt it at anytime, if

the PD? 15/40 cannot accept the message body, with VAX it is

necessary to wait for the completion of the message transmission

before another process may be started as messages are not queued

143

and another process cannot be run concurrently. This may cause

delays undesirable in an interactive environment; such delays

could be avoided with a dedicated control processor.

Using the system, a user sends commands interactively to the

control processor from a video terminal (see Appendix 4).

Synthesis is performed via the control processor (see Figure 7-2)

The user may request the control processor to do several things:

run the GGDL compiler

run the GGDL-Generator

run the Graphics Waveform/Envelope editing programs

14) run any user-defined program (high-level languages, etc.)

run any of the system utility programs, (eg. the editor)

compilers, etc.

compile and/or transmit a message to the PDP-15/ 110

synthesiser

1-5 of the above may be used to generate performance data for

the synthesiser. This includes compositions,. waveform

definitions, control information for the writing of functions on

the Non-Standard Synthesiser, and so on. 'Messages' are used to

transmit data to and control the performance of the synthesiser.

Message Compilation and Transmission

Messages may be of five types:

144

Performance-data Messages

Execution Commands 	*

Waveform Definitions

Zj) Function-writing control data for the Non-Standard

Synthesiser

5) Abort Command

Each type of message contains differently formatted information,

both for the user and 'on the links'

'Performance messages' contain information defining the event

queue - what pitches are to be performed in which voices, their

durations, changes of waveform,, the method of synthesis to be

used, and so on.. 'Execution commands' indicate whether to perform,

to write Functions (for non-standard synthesis instrument) , or to

delete certain previously received messages. Waveform definitions

consist of 4096 12-bit samples representing a waveform, and

'Function writing control data' messages contain the variables

required to instantiate the grammar of the non-standard synthesis

instrument for generating Functions. The 'Abort command'

interrupts the subordinate processor and requests it to abandon

whatever it is doing and to return to the idle process until

further instructions are received.

A user will prepare messages as text files either with an

editor or directly typing in a message using the message

compilation/transmission program. The user's text must be checked

for correct formatting and data types, compiled and assembled into

a machine readable representation that can. be transmitted (as

145

bytes) between two processors, and then packed with a correct

identifying header and end—of—file character. This can be done

using the commands available for instructing, the message

compilation and transmission program.

To 'perform' the synthesiser, a user must first send the data

required to the synthesiser as messages. Commands may then be

sent to 'perform' the event—queue to which the synthesiser may

respond either by executing the event queue, ie. performing, or by

requesting further data, ie. messages, to be sent. For example,

if an event queue has not been received, or the event queue

specifies that three waveforms are required for execution though

only two have been received, the synthesiser generates an

appropriate error message. The synthesiser maintains a record of

its 'conversations'- independent of the control processor. This

insulates each system from faults, for example, system crashs that

may occur on one of the systems, and enables the control processor

to abandon its communications process, losing records associated

with the process on VAX, without the loss of information required

to maintain a smoothly running system.

Summary

The computer aided composition system described in this chapter

was implemented as a suite of programs. The system provides an

interactive environment in which music structures may be

automatically generated and easily, examined. Complementary aids

may be used to synthesise, visually inspect and easily edit

146

structures. For the purpose of the research concern of this

thesis, it was used to investigate whether generative grammars

could usefully aid composers. The practical results used for the

basis of this estimation are presented in Chapters 4, 5, and 6.

147

Chapter 8: Conclusions and Further Research

This thesis proposed to investigate whether it is possible to

usefully aid composers in the process of composition by automating

part of the composition process using generative grammars.

Considering in what ways composers might be aided by computers, it

was suggested that, as many contemporary composers use formalised

composition techniques, the process of music structure generation

could be automated to aid composers. The process of composition

using formal techniques could, in the case of many contemporary

composers, be seen as one of defining the syntactic rules of a

music language and then generating music structures by applying

these syntactic structuring rules. A useful aid to composers, it

was proposed, would be to automate the laborious process of

applying these syntactic structuring rules to generate

compositions. The process of composition then becomes one of

defining the rules of a composition language which a computer

automatically applies to generate compositions.

It was fairly obvious that grammars could be used for a general

rule based system for language generation. But it was not obvious

that composers would be able to use grammars as an aid in the

composition process. Therefore, a system was implemented, based

on generative grammars, to investigate whether, in fact, grammars

could be used to usefully aid composers in the composition

process.

Other systems had been designed to automate the compositional

148

process in specific music languages, though not using grammars,

and it was clear that, at least to composers composing in these

languages, the automation of structure generation was a useful

aid. Both Koenig and Xenakis successfully used such systems to

automate their composition processes. However, with these systems

a composer is limited to a predefined set of composition rules; a

composer may not specify his own composition rules to automate his

individual composition process. Nor could these systems be used

by composers interested in composing with the predefined rules but

with a different compositional object. That is, the programs were

designed for generating specific types of output, for example, for

instrumental composition (Xenakis 1971, Koenig 1970, 1970b) where

only a specified set of parameters could be generated, eg. pitch,

duration, and dynamic, or for structures of sound samples (Berg

1978, Banks 1979); but an arbitrary compositional object could not

be defined.

The system described in this thesis is a flexible CAC system.

The GGDL—CAC system set out to provide a facility with general

application. The system provides a facility, using generative

grammars, that permits the specification of a large number of

different types of compositional rules as well as a facility

which, using grammatical descriptions of music languages, may be

used to automatically generate compositions in a defined language.

The implementation of the grammar system was designed in such a

way as to permit, in addition to the specification of different

compositional rules by different composers, the possibility of the

specification of different compositional objects for a given set

149

of compositional rules.

However, grammars on their own would be difficult to use. It

would be difficult to interest a composer to use a facility 'to

aid him in the composition process' if its use presented obstacles

which obstructed a natural method of composition. Traditional,

ie. non—automated, composition tends to rely on a method where

music structures are generated, inspected and evaluated in a

feedback process. It would not be possible to evaluate if

grammars could usefully aid composers unless the facilities with

which a composer could use grammars permitted the easy inspection

and evaluation of generated compositions. The GGDL—CAC system,

therefore, was designed and implemented to provide facilities by

which composition languages could be defined and compositions then

automatically generated in the language, and facilities for

inspecting structures generated.

Results obtained using the implemented system demonstrate that

grammars can usefully aid composers in the process of music

composition. A grammar was defined to generate, in a completely

deterministic manner, Steve Reich's "Clapping Music". The

thourough investigation of the possibilities of a composition

'process' such as that used by Reich for "Clapping Music" would be

extremely tedious without an automated structure generation

system. Clearly, such a composition can be composed without such

a system - Reich did so. However, in the case of the Reich

composition, it is suggested that with such a system, the complex

interactions between the different parts of the deterministic

150

process could be explored with a number of different rhythmic

patterns. The system could reasonably quickly generate different

structures using Reich's process and the structures could be

synthesised, listened to, and comparative evaluations made. In

such cases, a system such as the one described in this thesis

could usefully aid a composer.

David Hamilton's composition of "Four Canons" using the GGDL

CAC system further supports this. In this case, the system has

been used by a composer in a completely deterministic fashion to

investigate the possibilities of a composition process. Hamilton

generated several 'abstract' structures and, with each structure,

defined several different intervallic frequency proportion

relationships for mapping the structures. By this method,

Hamilton examined, listened to and evaluated the different

intervallic systems. Using the material generated, he selected

from among the possibilities those structures that were suitable

for his compositional aims. However, whereas Reich could possibly

have used pen and paper to generate a number of structures using

the same process but different patterns, and then examined the

differences, in the case of the unusual intervallic relationships

that Hamilton was interested in experimenting with, the

relationships could not be easily imagined and certainly could not

have been performed without the use of a computer.

The example of a grammar that would include the Schoenberg Trio

from the Piano Suite, Op. 25, in the language that it generated

demonstrates that the system may be used to generate sophisticated

151

music structures and also suggests ways that the system could be

used for musicological research. It is possible with the system

to test ' a formal description of music compositions for their

adequacy. A description of 'the language' of a composition can be

formalised and, using the description, the machine can generate

compositions. If these compositions adequately resemble the

composition modelled, then, in a sense, there is some validity to

the formal description. The composition generated using the

grammar from the Schoenberg example, ie. Figure 11_3, poses a

number of interesting musical questions. Comparing the

compositions in Figures 4k.2, ie. the model, and 4._3 one can ask

what the differences between them are, which of them is the more

interesting and why? Certainly, if not a useful aid to composers,

such a system may, at least, be used to suggest a number of

stimulating musical questions.

In these three compositions, Reich's "Clapping Music",

Hamilton's "Four Canons" and Schoenberg's Trio, the 'object' of

the composition is different in each, ie. clapped notes, computer

synthesised notes, and notes to be performed on a piano. The

grammar system was designed to perform the process of structure

generation in three distinct stages: a rewriting process, a

transformation process and a mapping process. Dividing the

process into these distinct stages permitted the definition not

only of different composition rules, but also different

compositional objects. These three compositions demonstrate both

that grammars may be used to aid composers and that this type of

grammar provides a flexibility which is essential in a system that

15

is to be of general application. 	Composers not only compose

structures in different ways, but they also compose for different

types of performances and may conceive of the compositional object

in different ways. Two composers, for example, writing for piano

may consider very different aspects of the performance to be

significant. One may only be concerned with pitch-duration

structures, as in the examples generated using the grammar for the

Schoenberg Trio, another only with timbral differences, eg.

'klangfarben compositionen' . The GGDL system is sufficiently

flexible to cope with many of the dethands different composers may.

make.

The system, in fact, is sufficiently flexible that a composer

may work not only with the composition of 'macro-structures' , but

also with 'micro-structures'. The author used a grammar system, a

prototype of the GGDL system described in this thesis, to compose

the sounds of 'After Artaud' . 	In the case of realising 'After

Artaud' , grammars were a useful aid. 	The composition was

conceived in such a way that the generation of the sounds and the

specific selection of a given sound for a given object in the

composition was to be left to a controlled but not completely

determined process. In addition, several occurrences of the same

sound in the score were to be realised distinctly; this idea was

directly derived from experience with grammars and phonetics and

the conceptual distinction made between a morpheme and an

'allc-morph' , ie. a realisation of the morpheme, a conceptual

distinction paralleled in the distinction made in the grammar

between structure generation and structure mapping. -

153

Koenig was interested in considering how grammars defined in

GGDL could be used to generate structures that could not easily be

generated with other composition programs he was familiar with,

viz, the 53? sound synthesis program. Symmetrical waveforms are

an example of how grammars may be used to express structures not

easily described in other generative systems.

The 'automated non-standard sound synthesis instrument' was

also a direct consequence of using grammars. It demonstrates that

the use of generative grammars and an automated CAC system may, in

addition to facilitating composers in the composition process,

open new possibilities in composition that could not have been

arrived at without such a system.

Thus, the conclusion drawn from this investigation is that, in

fact, grammars and the automation of the composition process can

be of use to composers. Moreover, the use of a modularised

grammatical description was demonstrated to have a number of

advantages. Using the CAC system implemented, grammars were shown

to be a useful way for describing different types of composition

processes as well as for generating compositions by similar

processes but using different compositional objects. Not only may

grammars be used to facilitate the composition of macro-musical

structures, but also micro-sound structures, where often the size

of the task of a sound description, for example, where 20,000

digital samples are required for each second of sound,

necessitates some form of automation. It was also shown that

grammars may open new possibilities in composition.

154

A conclusion of the thesis is that grammars may be useful for

the generation of music structures. In light of this conclusion,

perhaps the most significant contribution of the research reported

in this thesis is the development of the GGDL language and the

GGDL-Generator. If grammars are to be used as an aid, facilities

exploiting them will need to be developed. Though, for example,

'After Artaud' exploited grammars using a system especially

developed for its composition, the overhead of developing large

software systems for each application of grammatical generation is

clearly inefficient and would limit the attractions of using

grammars, ie. the facility with which they can be applied to

certain tasks. Few composers would be prepared to develop such

software. The versatility and general applicability of the GGDL

system are desirable features in a CAC system automating the

composition process.

The GQDL system may be used for investigating in what ways and

to what extent grammars may be used by composers to generate music

structures. The grammar system could, perhaps, also be used for a

disciplined musicological investigation of the nature of the

formal structure of music; or to facilitate systematic

experimentation and research into 'form-potential', such as

Koenig's. GGDL may prove a useful tool with various applications.

Implementing a grammar system was useful for determining some

of the benefits of exploiting grammar systems. It also helped to

clarify some of the limitations of such systems. Though one may

theoretically describe any lanugage in terms of rewrite rules and

155

grammars, practically, it will be extremely difficult to describe

certain constructs using the facilities provided by a given

facility

For example, experience with the GGDL implementation used for

the work reported in this thesis made apparent a number of

inadequacies of the language. A new version of the GGDL language

has been specified in which a number of alterations and extensions

have been made. For example, the available data—types have been

extended and formatting constraints have been made less rigid.

There are, however, more fundamental limitations which make

certain music constructs difficult to describe. The basis of the

GGDL language is a linguistic mechanism, the rewrite rule.

Natural language is monolinear, but in music, complex linear, ie.

melodic, and vertical, ie. harmonic, relationships may occur.

Such ortogonal relationships may be difficult to represent using a

grammatical system such as the GGDL system.

The partition of the generation process in GGDL facilitates the

definition of the compositional object independent of the

generation process. In some respects, however, it may prove a

limitation. The division makes it is difficult to consider how

objects are related to one another 'in time' whilst generating the

abstract representation of a music structure. For example,

morphemes which represent duration—values, manipulated during the

process of structure generation, have no 'real' value. The

relationships that are generated in time are therefore difficult

156

to evaluate. 	This again makes it difficult to generate

contrapuntal 	textures 	where 	both melodic 	and 	harmonic

relationships need to be considered whilst generating a structure.

In GGDL one can straight—forwardly generate a linear structure

and superimpose a counterpoint, as in the examples in Chapter 4.•

However, in the examples in Chapter II resulting vertical or

harmonic relationships were not considered explicitly by the

generation process. In "Clapping Music" the vertical

relationships which resulted from the 'phase' relationship between

the clapped pattern in the two voices was not explicitly

considered, but rather was an implicit result of the process.

Similarly, in Hamilton's "Four Canons", Hamilton was aware of what

vertical relationships would result from generating two structures

of intervallic relationships in a specified counterpoint but these

were not considered and did not influence the generative proceS.

On the otherhand, the grammar derived from the Schoenberg Trio

could be criticised for its failing to account for the harmonic

relationships that would be created with certain series - a series

which resulted in octaves and fifths certainly would not have been

acceptable to Schoenberg.

There are ways in GGDL to generate structures whilst

considering both melodic and harmonic relations. For example, one

could generate the two or more voices simultaneously and make the

selection of each voice dependent on the other. However, to

generate one voice independently and then harmonise it with a

second part after generating the first part, after all, a quite

157

natural thing for a musician to do, might prove awkward in GGDL.

Sufficient experimentation with generating such structures using

GGDL has not yet been undertaken to evaluate how the GGDL language

might be used to describe such a generation process. In any case,

it is not clear what sort of mechanism might be used to

automatically generate such structures (with or without GGDL).

When a mechanism for generating such structures is 'discovered'

GGDL could possibly be extended to provide such a facility.

Directions for Further Research

Given a system such as the GGDL CAC system with its facilities

for describing and generating music structures there is scope for

experimenting with generating different sorts of structures using

such a system. Further extension of the definition language

facilities and the development of facilities based on

fundamentally musical, rather than linguistic, concepts could

enhance facilities for music structure generation.

In any case, the composition of music consists of more than

just generating formal abstract music structures. When writing a

piece of music,, a composer does much more than generate note and

duration structures from a set of formal compositional rules. In

the Schoenberg Trio example in Chapter l, the set of rules

generates only a note—duration structure'. The Schoenberg

composition, however, consists of much more than this. The octave

distribution of the pitches has not been considered, nor have the

dynamics and perhaps most important, the articulation of the work.

158

Schoenberg's rule of serialism, le. that no note (or whatever)

should occur a second time until all others have occurred once,

may be easily formalised and programmed. But it is a much greater

problem to formalise the following description of Schoenberg's

style: "Though using serial rules to generate notes, rather than

late—romantic harmony, Schoenberg's 'Suite fur Klavier' can be

said, nonetheless, to be written in a Brahms—like piano idiom".

Most research in computer composition has been concerned with

the generation of notes, durations, octave distribution, dynamics,

etc. There has been little attempt to try to incorporate in a set

of compositional rules 'knowledge' about what instruments and what

sounds are used in the composition. A composer writing a piece of

music for piano is likely to write a different piece than if it is

for violin: phrasing, octave distribution, dynamics, and the pitch

structure itself are likely, to be influenced by the medium by

which the composition is to be realised. The following quotation

exemplifies the current concern with musically 'intelligent'

progr ans.

C. ROADS: "One kind of artificial intelligence task is that of a
program itself knowing what kind of sounds that it's actually
dealing with and altering the program logic according to these
sounds.. Do you see this as a possibility?"
G. M. KOENIG: "Not only as a possibility, I think it is even a
necessity.. .you need some kind of relationship between the musical
language structure and the structure of the sounds produced."
(Roads 1978b)

Further research using the facilities described in this thesis

could investigate and formalise the rules of orchestration and how

the process of generating a music structure is related to the

mediun for the generated structure's performance.

159

Just prior to formally beginning the development of the GGDL

CAC system, the author developed a program for the composition of

a piece for harp. 1 It was an attempt to design a composition

program which could be said to have some musical intelligence.

The problem of generating a composition for an instrument is not

only to formalise the rules of a music language but to integrate

into the compositional rules a description of the instrument that

is to perform the generated structure.

To write the composition for harp, it was necessary to

constrain the generation of music structures by the limitations

imposed by the harp itself. The most obvious problem facing any

composer writing chromatic music for the harp is the availability

of only seven notes in the octave at any one time and the

associated problems of pedalling. But, in addition to the

practical details, for example, a harp's pedalling limitations and

fingering, or a wind player's breathing, a description of an

instrument, ideally, would consider the more subtle possibilities

of the different methods of performing an instrument and how they

sound and affect the realisation of the composition in musical,

rather than practical terms. That is, how the idiomatic

capabilities of an instrument might be exploited to musical

effect.

1) It was the difficulties in describing and implementing the
program that made clear the possible usefulness of a facility such
as the GGDL. composition software. The rules of the composition
were in fact expressed as a set of nested finite-state transition
matrices which could have been considerably more easily
implemented using GGDL, rather than designing software to both
simulate the finite-state generation mechanism and permit the easy
definition of transition values.

•160

In the composition program for writing for harp a number of

different ways of performing th4 harp were listed. The

constraints associated with each manner of performance and the

ways that one type of performed note could be related to another

were also included. For each listed way of performing the harp,

different variables could be given for octave distribution,

1
dynamics, and possible pedal changes.

When the computer would generate a note of the composition, it

would evaluate the context and determine what modes of performance

would be suitable, ie. sound good. Having selected to perform,

for example, a harmonic, it would determine what pitches could be

performed and which octave would be suitable, which dynamic, and

so on. It might consider, from a practical viewpoint, that a

harmonic cannot be performed on the wound strings of a harp. From

the viewpoint of ' sound quality' , it might assess that a harmonic

will not sustain if played in the upper octaves or that a full

bodied harmonic may be obtained by performing it in the mid—range

of the harp. Playing a chord in the higher octaves of the harp,

on the other hand, can be used to obtain a very brittle quality.

The program was designed to exploit the idiomatic qualities of the

instrument to musical effect.

This is not necessarily the order in which a composer would

1) It may be possible to change the available pitches to permit a
wanted but not at the time available note to be performed, for
example, if one is slowly performing harmonics or 'ordinary'
attacked notes. But the limitations increase if one is performing
grace notes or chords: there may not be the time to pedal—change.

161

actually make decisions without the computer. It is, however, one

way of beginning to formalise the problems of composing for harp.

The harp is a very difficult instrument for which to write and in

the progran described, the description of performing the harp was

not completely succesful. The program generated some

unperformable music. Problems relating to the pedalling were the

most obvious short—caning of the formalisation of harp technique.

It was necessary to 'rearrange' some of the music generated.

However, the computer did generate some effective and competently

written music for harp (see Figure 8-1).

This points to a possible application of GGDL. Using GGDL one

may explore not only the generation of music structures, but rules

of orchestration and the relationship between the rules of

structure generation and the performance of generated structures.

However, a possibility given such research and fruitful

results, would be to further facilitate composers in the process

of composition by integrating into a. CAC system a data—base

listing constraints on instrumental performance and perhaps

information on how such constraints need to be considered in the

process of composition. Perhaps one could simply add to a set of

composition rules, a reference to the data—base's information on

the instrument for which the composition is to be performed and

the composition system could automatically ensure that a generated

composition would be performable. Generated structures could be

tested against a set of 'design rules' in a similar way to which

integrated circuit CAD systems check a circuit design against

1 62

t*nflrfl ATr

-I

rl

mf

49

;CO A

acceL 	a tempo
4

it 	I 	
A

A

--

I -
-

•r
• _______________ I

cc:f

acteL

MF

a ten po

two hands: momentary breaks in t€Z
whilst other notes e attacked..

Figure 8-1: 'For Solo Harp' by S.R. Holtan: 	a composition

composed with the aid of a computer.

163

e
4a

V

-- - I -
—T a- -- — —

.c4f

h'_I_lift
Lb 	BAb

• 	MODERATE

r_J ___ L
•___

. 	V

- -.

- A

/
octet

e
si

mf 	up
aiempo

Cl fltCP

I

Bb 	Gb 	4 	 j_

a

I 	 - 	 • 	 -

C# 	Ab 	E 	 Gb 	 fl F#

Ll notes sustained
(except etouffes)

2

164

"W 	 p 	 p'_

a

4 	Ia 	
r.

V
p 	 / 	 A

p 	
Mf 	 my.

ny 	17

G 	A 	 G C 	B

- 	 A 	A 	 A

165

specifications of electrical and physical contraints.

There is, however, a considerable difference. 	In circuit

design consistent design rules result in a uniformity that permits

a more efficient fabrication process to be designed. Designs may

also be checked for logical, ie. functional, consistency. In

music, efficiency is not a primary criterion for 'design' or

composition. Nor can the 'correctness' of the logic of a musical

language be objectively evaluated. In music there is no right or

wrong. Some music just sounds better!

166

BIBLIOGRAPHY

BANKS, J. 0., P. Berg, R. Rowe, and D. Theriault
(1979) 11 5SF - A 31—Parametric Approach to Sound
Synthesis", Sonological Report, Institute of Sonology,
Utrecht.

BEAIJCHAMP, J.
(1979) "Brass Tone Synthesis by Spectrum Evolution
Matching with Non—linear Functions", Computer Music
Journal, Vol. 3, No. 2, pp. 35-43, M.I.T. Press,
Massachusetts.

BERG, P.
(1975) "ASP - Automated Synthesis Program", unpublished
manuscript.
(1978) "A User' a Manual for 3SF 11 , unpublished manuscript.
(1979) "PILE - A Language for Sound Synthesis", Computer
Music Journal, Vol. 3, No. 1, pp. 30-37, M.I.T. Press,
Massachusetts.

BERTONI, A., G. Haus, G. Mauri, and M. Torelli
(1978) "A Mathematical Model for Analysing and Structuring
Musical Texts", INTERFACE, Vol. 7, No. 1, pp. 31-44, Swets
& Zeitlinger, Amsterdam.

BOULEZ, P.
(1955) "Structures, Book 1, for two pianos", Universal
Edition, Vienna.

BUXTON, W.
(1977) "A Composer's Introduction to Computer Music",
INTERFACE Vol. 6, No. 2, pp. 57-72, Swets & Zeitlinger,
Amsterdam.

BUXTON, W. and G. Fedorkow
(1977) "The Structured Sound Synthesis Project (55SF): An
Introduction", Technical Report CSRG-92, University of
Toronto, Toronto.

BUXTON, W., R. Sniderman, W. Reeves, S. Patel, and R. Baecker
(1979) "The Evolution of the 555? Score Editing Tools",
Computer Music Journal, Vol. 3, No. 4, pp. 14-25, M.I.T.
Press, Massachusetts.

CHOMSKY, Noam
(1957) "Syntactic Structures", Mouton, The Hague.

CHOWNING, J.
(1973) "The Synthesis of Complex Audio Spectra by Means of
Frequency Modulation", Journal of the Audio Engineering
Society, Vol. 27, No. 3, pp. 526-34.

DAHL, 0., F. Dijkstra and C. Hoare
(1972) "Structured Programming", Academic Press, New York.

167

10210
(1969) 	"PIP-iS 	Systems Reference Manual", 	Digital
Equipment Corporation, Maynard, Massachusetts.
(1969b) "PDP-15 MACRO-is Assembler Programmer's Reference
Manual", Digital Equipment Corporation, Maynard,
Massachusetts.
(1977) 	"VAX11/780 	Architecture 	Handbook", 	Digital
Equipment Corporation, Maynard, Massachusetts.

DIE REIHE
(1955) "Anton Webern", eds. H. Eimert and K. Stockhausen,
Universal Edition, Vienna.

DI GIUGNIO, P. and H. Alles
(1977) "A One-Card 64
Computer Music Journal,
Press, Massachusetts.

Channel Digital Synthesiser",
Vol. 1, No. 4, pp. 7-9, M.I.T.

FELDMAN, J.
(1966) "A formal semantics for computer languages and its
application in a compiler-compiler" Comm. ACM 9:1, 3-9.

FELDMAN, J., and D. Gries
(1968) "Translator writing systems" Comm. ACM 11:2,
77-113.

GOGUEN, J.
(1975) "Complexity of Hierarchically Organised Systems and
the Structure of Musical Experiences", International
Journal of General Systems, Vol. 3, No. 14 Pp. 237-251.

GRAY, J.
(1975) "An Exploration of Musical Timbre", Stanford
University Department of Music Report No. STAN-M-2.

HAMILTON, D.
(1980) "Four Canons", tape composition realised for a SEC
commission with the GGDL Computer Aided Composition System
at the Department of Computer Science, University of
Edinburgh.

HILLER, L.
(1957) "Illiao Suite for String Quartet".
(1959) "Experimental Music", McGraw-Hill, New York.
(1969) "Some Compositional Techniques Involving the Use of
Computers", in "Music by Computers", eds. H. Foerster and
J. Beauchamp, pp. 71-83, John Wiley and Sons, Inc., New
York.

HOARE, C., and N. Wirth
(1973) "An axia-natic definition of the programming
language PASCAL", Acta Informatica 2:14, 335-356.
(1974 - revised 1978) "PASCAL User Manual and Report",
Springer Verlag, New York-Heidelberg-Berlin.

HOLTZMAN, S. R.
(1978) " Music as System", Interface Vol 7, No. 4, pp.
173-187, Swets & Zeitlinger, Amsterdam.
(1978b) "A Description of an Automated Digital Sound
Synthesis Instrument", Research Report No. 59, Department
of Artificial Intelligence, University of Edinburgh.
(1978c) "After Artaud", computer music composition for
4—channel tape, realised at the Institute of Sonology,
Utrecht.
(1979) "An Automated Sound Synthesis Instrument", Computer
Music Journal Vol. 3, No. 2, pp. 53-62, M.I.T. Press,
Massachusetts.
(1980) "A Generative Grammar Definition Language for
Music", INTERFACE Vol. 8, No. 2, Swets & Zeitlinger,
Amsterdam.
(1980b) "The GGDL System Configuration", Proceedings of
Computer Music in Britian, ed. S. R. Holtzman, pp. 17-20,
EMAS, London.
(1980c) "Using Generative Grammars for Music Composition",
Computer Music Journal, Vol. 4, No. 1, M.I.T. Press,
Massachusetts.
(1980d) "Grammars and Computer Composition", ProceedingE
of Computer Music in Britain, ed. S. R. Holtzman, pp.
95-110, EMAS, London.

HOWE, H.
(1975) "Electronic Music Synthesis", Dent, London.

JAKOBSON, R.
(1970) "Main Trends in the Science of Language", Harper
and Row, New York.

KAEGI, W, and S. Tempelaars
(1978) "VOSIM - A New Sound Synthesis System", Journal of
the Audio Engineering Society, Vol. 26, No. 6, pp. 418-25.

KOENIG, G. M.
(1960) "Essay - Composition for Electronic Sounds"
Universal Edition, Vienna.
(1963) 	"The 	Construction 	of 	Sound", 	unpublished
manuscript.
(1970) "Project 1 11 , Electronic Music Reports 2, Institute
of Sonology, Utrecht.
(1970b) "Project 2 - A Programme for Musical Composition",
Electronic Music Reports 3, Institute of Sonology,
Utrecht.
(1971) "Summary: Observations on Compositional Theory",
Institute of Sonology, Utrecht.
(1971b) "The Use of Computer Programmes in Creating
Music", La Revue Musicale, Paris.
(1978) "Compositional Processes", presented to the UNESCO
computer Music Workshop, Aarhus, Denmark, to be published
in the Conference Proceedings.

169

LASKE, 0.
(1972) "On Musical Strategies With a View to a Generative
Theory of Music", INTERFACE, Vol. 1, pp. 111-125, Swets &
leitlinger, Amsterdam.
(1973) "Introduction to a Generative Theory of Music",
Sonological Reports, No. lb, Institute of Sonology,
Utrecht.

LYONS, John

	

(1968) 	"Introduction 	to 	Theoretical 	Linguistics",
Cambridge University Press,. Cambridge.

MATHEWS, M.
(1969) "The Technology of Computer Music", M.I.T. Press,
Cambridge, Mass.

MATHEWS, M. and F. Moore
(1970) "GROOVE - A Program to Compose, Store and Edit
Functions of Time", Communications of the ACM 13.

MATHEWS, M. and L. Rosier

	

(1969) 	"Graphical 	Language 	for 	the 	Scores 	of
Computer-Generated Sounds", in "Music by Computers", eds.
H. Foerster and J. Beauchamp, pp. 8 14_11 14, John Wiley and
Sons, Inc., New York.

METCALFE, R., and D. Boggs
(1976) "ETHERNET: Distributed Packet Switching for Local
Computer Networks", Communications of ACM, Vol. 19.

MORRILL, D.
(1977) "Trumpet Algorithms for Computer Composition",
Computer Music Journal, Vol. 1, No. 1, pp. 46-52, M.I.T.
Press, Massachusetts.

NATTIEZ, Jean
(1975) "Fondements d'une Semiologie de la Musique", Union
General d'Editions, Paris.

REICH, S.
(1972) "Clapping Music", Universal Edition, London.
(1980) "Catalogue for Steve Reich", Universal Edition,
London.

RISSET, J. C.
(1966) "Computer Study of Trumpet Tones", Bell Telephone
Laboratories, Murray Hill, New Jersey.
(1968) "An Introductory Catalogue of Computer Synthesized
Sounds", Bell Telephone Laboratories, Murray Hill, New
Jersey.

170

ROADS, Curtis
(1978) "Composing Grammars", unpublished manuscript.
(1979) "Grammars as Representations for Music", Computer
Music Journal Vol 1, No. 1, pp. 4355, M.I.T. Press,
Massachusetts.

ROBERTSON, P.
(1977) "The IMP-77 Language", Department of Computer
Science Report No. 19, University of Edinburgh.

ROUGET, G.
(1961) "Un Chromatisme Africain", L'Homine 1, Paris.

RUWET, N.
(1972) "Langage, Musique, Poesie", Seuil, Paris.

SCHAEFFER, P.
(1966) "Traite des Objets Musicaux", Seuil, Paris.

SCHOENBERG, A,
(1925) "Suite Fur Klavier, Op. 25", Universal Edition,
Vienna.

SMITH, L.
(1972) "SCORE - A Musician's Approach to Computer Music",
Journal of the Audio Engineering Society 20, 1.

TANNER, P.
(1972) "MUSICOMP, an Experimental Aid for the Composition
and Production of Music", ERB-869, Ottawa, N. R. C. Radio
and Electrical Engineering Division.

TANSLEY, J.
(1977) "Multi—Computer Systems", paper presented at IUCC.

TRUAX, B.
(1973) "The Computer Composition - Sound Synthesis
Programs PODk, PODS, & POD6 11 , Sonological Reports 2,
Institute of Sonology, Utrecht.

UZGALIS, R., and J. Cleaveland
(1977) "Grammars for Programming Languages", Elsevier
North—Holland.

WIJNGAARDEN, Aad van
(1965) "Orthogonal Design and Description of a Formal
Language", Technical Report MR 76, Amsterdam: Matheinatisch
Centrum. -

WINOGRAD, T.
(1968) "Linguistics and Computer Analysis of Tonal
Harmony", Journal of Music Theory, Vol. 12, Spring, pp.
2_19, Yale, New Haven.

171

XENAICIS, lannis
(1955) "The Crisis of Serial Music " , Gravesner Blatter,
No. 1, Ax's Viva Verlag, Mainz.
(1959) "Syrmos", Salabert, Paris.
(1971) "Formalized Music", Indiana University Press,
Bloomington,
(1971b) "Musique, Architecture", Casterman, Paris.

172

Appendix 1: The High-Level Language Facilities of GGDL

In the GGDL programming language, high-level language
facilities are provided for the definition of control functions in
grammar programs, and for the definition of mapping routines in
morphological mapping programs, as well as for associated routines
and functions.

Non-System Rewrite Control

If, in a grammar program the system control functions (cf.
3.2) are found inadequate for the type of control desired, the
high-level language facilities may be used for the definition of
non-system rewrite control functions. Any non-system control
functions are called by name (with any parameters) enclosed in
arrow-brackets immediately after the rewrite arrow (of. 3.1.1) or
invocation number (cf. 3.1.25), followed by the possible strings
which may be selected by the function separated by periods ('.fl.
A rewrite rule with control by a non-system function is, for
example:

E X -> < FUNCNAME (PARAM1, PARAM2) > SELl . SEL2 . SEL3 J.

The control functions are written apart from the rewrite rules.
They are functions to the extent that they must return an integer
as a result, the number being used as an index to select a RHS
string. A non-system control function may consist of a sequence
of keywords, identifiers and constants together with arithmetical
operators and various separator characters.

Mapping Routines

• Mapping routines are called during the process of mapping a
string generated by the rewriting and transformation processes.
Beginning at the start of the string, the character string is read
until a separator (',I) is found. The read string should be the
name of a terminal for which a mapping routine is defined. The
mapping routine is called; during its execution it may generate
appropriate output to represent the terminal, and may alter
variables to influence the mapping of other terminals in the
string. After returning from the routine, the next terminal is
mapped, and so on until the end of the string is reached.

Mapping routines are defined by program text which, like
rewrite control functions, may consist of a sequence of keywords,
identifiers,. constants, function and routine calls, and so on. In
mapping programs, procedures for writing to output files may be
called; such procedures are not permitted in grammar programs.

IMP and PASCAL Implementations of GGDL

The original implementation of the GGDL compiler and GGDLGEN
compiler-compiler (see Chapter 7) was written in IMP (Robertson
1977), an Edinburgh designed programming language. The results
discussed in this thesis were all obtained using the IMP
implementation.

173

½

has suggested

Experience with the GGDL language\ a number of alterations and
extensions that could be ñYade to improve the language. 	-

In addition, as a number of centres for computer music
in Europe and the United States have expressed an interest in
obtaining the GGDL composition software, a portable version of the
system is required. A extended and generally improved
implementation of the GGDL-compiler has been designed for
implementation in PASCAL (Hoare 1973, 19710. However, the PASCAL
implementation is not, at the time of submitting this thesis, yet
completed.

The following definition of the high-level programming
facilities in GGDL refers to the IMP implementation. Some of the
differences in the PASCAL implementation are discussed afterwards.

The definition of rewrite and métaproduction rules is described
in Chapter 3. What follows is a description of the programming
facilities that may be used for the definition of functions and
routines in the IMP implementation of GGDL.

Program Header

A program in GGDL must conform to certain formatting. Before
any statements are made a program header must be given. For a
grammar definition program, this is the keyword:

%GGDL
Thereafter, GGDL format requires that all global declaration
statements are given, followed by initialisation blocks and any
routine and function definitions. Then metaproduction rules and
lastly rewrite rules may be defined. 	The program file is
terminated by the keyword %ENDOFPEOGRAM. 	The only compulsory
statements are the header statement (%GGDL)', rewrite rules (of
which there must be at least one) and the %ENDOFPROGRAM statement.
No routines or functions, metaproductions, etc. need be included
in a GGDL grammar program. The morphological rules are defined as
a separate file. Morpheme set declarations and mapping routines
are illegal in a %GGDL file, as are output routines.

In a GGDL mapping program, before any statements are made the
program header:

%MDL
must occur. 	This must be followed by the morpheme set
declarations and then any global declarations. 	Initialisation
blocks and any routine, function of mapping routine defintions may
then follow. Metaproductions and rewrite rules are illegal in an
%MDL file. The program file is terminated by the keyword
%ENDOFPROGRAM. The only compulsory statements are the program
header statement (%MDL), the morpheme set declarations and the
%ENDOFPROGRAM statement.

Keywords

A keyword consists of a sequence of letters preceded by the
character 1 % 1 . The keywords permitted in GGDL programs are: 	-

%ARRAY 	%ARRAYNAME 	iC 	%CYCLE

174

2ND 	%ENDOFPROGRAM 	%EXIT 	%FOR
%FUNCTION 	%FUNCTIONSPEC 	%IF
%INITIALIZE 	%EL.SE 	%FINISH
%INTEGER 	%INTEGERNAME
%REPEAT 	2ETURN 	%RESULT
%ROUTINE 	iROUTINESPEC 	%THEN
%tJNTIL 	%WHILE

No spaces or non-letter characters may be inserted into the middle
of a keyword. 	 -

Keywords which may be used in mapping programs that may not
occur in grammar definition programs are:

%M AP 	%OUTPUT 	%OUTPUTCHAR
OR PH EM ES ET

Identfiers

An identifier consists of a string of letters and digits of
less than 20 characters, the first character of which must be a
letter. Examples are:

IDENTIFIER 	X 	ID1
In subsequent descriptions of the control language syntax, the
phrase <NAME> is used to denote the presence of an identifier.

Constants

Constants appear as operands in arithmetic expressions and may
be of two forms, decimal and character. Both represent integer
valued quantities - the language only has integer valued variables
and performs only integer arithmetic. All values are stored as
15-bit binary numbers, with a sign bit. A decimal constant is
represented by a sequence of digits:

10 	25 	66
No decimal points or powers of 10 are allowed (ie. real numbers or
exponentiation).

Arithmetic Expressions

An arithmetic expression consists of a
separated by operators. Operands can
constants, calls on functions or bracketed
operators are:

+ 	: 	addition

sequence of operands
be array elements,
sub-expressions. The

- 	: 	subtraction
* 	: 	multiplication

division
<C 	: 	logical shift left
>> 	: 	logical shift right
& 	: 	logical AND

logical OR
H 	: 	logical Excluxive OR

Their precedences are:
<< 	>> 	 highest

/ 	&
I! 	+ 	- 	lowest

Precedence is left to right for operators of equal precedence in
Ia

175

an expression. <EXPR> is used to indicate the presence of an
arithmetic expression.

Statements in Control-Function Language

Statements in the control-language are separated by either ';
or a newline.

Declarations

VARIABLES and ARRAYS: The names of variables and arrays denoting
storage objects are declared either at the head of a GGDL program
or at the head of a function or routine, in the former case being
global variables and in the latter local to the routine or
function within which they have been declared. 	Declaration
statements set aside storage for those variables or arrays. 	If
the variables or arrays are local to a routine or function, when
that routine or function is left the storage space is deleted so
that it may be re-used for future declarations. When routines and
functions are entered recursively new storage is set aside for the
variables and arrays declared without the loss of the previously
declared variables and arrays. This becomes reacoessible when the
recursive activation is left. This is accomplished by means of a
stack.

All names must be declared before they can be used. The only
objects that may be manipulated in control functions are integer
values. Declarations take the forms:

%INTEGER <NAME>, <NAME>,
%ARRAY <NAME> (Integer : Integer) , <NAME> (Integer

Integer
Only one dimensional arrays may be defined. The lower and upper
bounds of the index of the array must be integers.

Although all the names of variables declared in a single
routine or function must be distinct, the same name may be
declared in different routines to refer to different storage
objects, and if the same name should occur in a routine or
function as that of a global variable, the local storage space
referenced will take precedence, the storage for the global object
of the same name becoming inaccessible whilst within that routine
or function. The name will always refer to the most 'local'
declaration.

ROUTINES and FUNCTIONS: The name of each routine and function must
be declared before it can be called. A specification statement is
required before the routine or function is defined. The
specification statement consists of the keyword:

%ROUTINESPEC
or:

%FUNCTIONSPEC
for a routine or function, respectively, with the name of the
routine or function and an optional parameter list definition
following in parentheses. The parameters must be type specified
and may be of three types - integers, which pass the integer value
as an argument, integer-names which pass the address of an

176

integer, and array—names which pass the address of an array. Only
the names of global data objects may be passed and for integers
any legal expression may be given. When a procedure is called a
list of ACTUAL PARAMETERS must be supplied which must match the
formal parameters exactly in number, order and type. In the
specification statement the parameter type declarations are made
by the keywords for the type, ie.:

%INTEGER
%INTEGERNAME
%ARRAYNAME

followed by an optional parenthetically enclosed number for the
number of parameters of that type - by default, 1. Examples of
specification statements are:

iROUTINESPEC RT
%FUNCTIONSPEC FN (%INTEGER, %INTEGERNAME)
%ROUTINESPEC RT (%INTEGER (2), %ARRAYNAME,

%INTEGERNAME (2))
the last of which is equivalent to:

%ROUTINESPEC RT (%INTEGER, %INTEGER, %ARRAYNAME,
%INTEGERNAME, %INTEGERNAME)

Initialisation of Global Variables

Declared global variables may be 	initialised 	in an
'initialisation block' which is headed by the keyword %INITIALIZE
and terminated by the keyword %END. Within this block any global
variable may be assigned a constant integer value in statments of
the form:

GLOBALNAME = CONSTANT
For example:

VARX:5
An array location may be initialised by a statement in the block
of the form:

ARRAYX (INDEX) = 7
In order to facilitate the initialisation of consecutive array
locations, an initial value may be followed by a repetition count
in parentheses, or an asterisk (1*1) may be used to represent the
number of remaining elements in the array. The following
declarations are all equivalent:

ARRAYX (2:5) r 7,7,7,7
ARRAYX (2:5) r 7(*)
ARRAYX (2:5) = 7(4)
ARRAYX (2:5) r 7,7(2),7(')

The list of constants may extend over one line though no comma
should separate constants just before and after the new line.

Routines and Functions

Routines and functions are defined by a set of program
statements enclosed by the keywords %ROUTINE or iFUNCTION
(followed by the name of the routine or function and parameter
types and names) and %END. A routine takes the form:

%ROUTINE RT

177

%ENO
and a function takes the form:

iFUNCTION FN (%INTEGER PARAM1, %INTEGERNA1IE PARAM2)

%EN D
The parameters must match the specification statement parameters
for that routine or function exactly in number, order and type.

The difference between routines and functions is that functions
produce a value as their result and routines do not. The dynamic
(run-time) exit from a routine is achieved by executing the
statement:

%RETURN
This is also implied by executing the %END statement of a routine.
The dynamic exit from a function specifies a result and takes the
form:

%RESULT = <EXPR>
For example:

%RESULT = I*J_K
Should the expression require more than one line it may be
continued on the next line by ending the line with the
continuation keyword, U. Execution of the %END statement of a
function is invalid since no result is specified.

The program text which defines a routine or function may
consist of assignment statements, jumps (ie. redirection of
program flow), labels (for jumps), routine and function calls, and
IF-THEN conditional clauses, and repetition loops.

Routines and/or functions may not be defined within another
routine or function, ie. routine and function definitions may not
be nested.

Assignments

Variables and array elements are assigned new values using
statements of the form:

<NAME> = <EXPR>
<NAJIE> (<EXPR>) 	<EXPR>

For example:
I. = 2
A (I*J) 	(K+L)/2

Should the expression require more than one line of text it may be
continued on the next line by ending the line with the
continuation keyword %C.

Jumps

Labels are identifiers followed by the I:? character. 	For
example:

LABEL:
HERE:

The corresponding jump instructions would be:
-> LABEL
-> HERE

178

Labels are local to a routine or function and jumps can only
take place within a routine or function. Labels are not declared
and jumps may precede or fellow the occurence of the corresponding
label without restriction.

Routine and Function calls

A routine is called by executing a statemnt consisting of the
name of the routine and a correct list of parameters. The
parameters must match in order, name and type exactly with the
specification - integers may be any legal expressions. For
example:

%ROUTINE RT

%E ND
would be called by the statement:

RT
Similarly, the call of a function appears as an operand of an
expression. For example:

%FUNCTION FM (%INTEGER X, %INTEGERNAME Y)

%E ND
might. be called by:

I r FN (VAR1+(2*VAR3), VAR2)
Routines and functions can be called recursively to any depth.

There is in GGDL a system provided random number generating
function. This system function is called like any other function
and takes two integer values as arguments - these providing the
lower and upper bounds, respectively, within which the random
value is generated. The name of the function is "RANDOM" and its
specification is:

%ROUTINESPEC RANDOM (%INTEGER(2))
It may be called, for example, by the statement:

RANDOM (LEOUND, UBOUND)

Conditional Statements

The general form of the conditional statement is:
%IF <COND> %THEN <TEXT> %ELSE <TEXT> %FINISH

where <COND> represents the condition to be tested and <TEXT>
represents program text to be executed. If the condition is true
the first block of text (enclosed by the %THEN and %ELSE or
%FINISH keywords) of text is executed, otherwise the second block
(enclosed by the %ELSE and %FINISH keywords) is executed. The
%ELSE clause is optional, it can be omitted, in which case if the
condition is false execution proceeds to the instruction following
the SFINISH keyword of that conditional clause.

A <COND> is formed by one or more simple relations of the form
<EXPR> <CGIP> <EXPR>

where <caip> represents one of the comparators:

For example:
I<zJ+K

179

Program text within the conditional statements may be
assignments, routine—calls, jumps, labels, nested conditional
clauses (in which case the %IF—%THEN clauses and %FINISHes must
balance within any routine or function) , %RETURN, and %RESULT =
<EXPR>.

Repetitions (Loops or Cycles)

A group of statements may be repeated by enclosing them between
the keywords %CYCLE and %REPEAT. The statements enclosed by these
keywords will be referred to as the 'cycle body' and may consist
of any legal statements (eg. assignments, jumps, routine or
function calls, IF—THEN clauses, etc.). An unconditional
repetition of text would take the following form:

%CYCLE
CYCLE BODY

%R EPEAT
It is also possible to cycle on a given condition. Conditional
cycles may take three forms:

%WHILE <COND> %CYCLE
CYCLE BODY
SF EAT

where the cycle body is only executed while the condition is true;
%FOR <CONTROL> = <INIT>, <INC>, <FINAL> %CYCLE
CYCLE BODY

%REF EAT
where the cycle body is repeated until the control variable
<CONTROL> is equal to <FINAL>, the control variable being
initialised to (when the loop is entered) <INIT> and incremented
with each execution of the cycle body by <INC> - the effects of
altering the control variable within the cycle .body. are undefined;
and the last form:

%CYCLE
CYCLE BODY

%REPEAT SUNTIL. <cond>
where the cycle body is executed at least once the condition being
tested after execution of the cycle body, repetition of the cycle
body ending with the condition becoming true.

The keyword %EXIT may be used as a. legal statement and causes
the cycle to be terminated and control passed to the statement
following the matched repeat,

Comments

Comments may occur in program text and will be ignored by the
GGDL compiler. They may occur where any other type of program
statement may begin and are indicated by the ' !' character. All
characters between the ' I' character and the next separator will
be ignored. A comment in a GGDL program might look like:

This is a comment 	.
or:

I = I + 2 ;! 'I' is incremented by two
Comments may not occur in the middle of other statements, for
example, in between the brackets . of rules or metaproductions (ie.

IM

'[' and 'F or 	and '"), in expressions which may be longer
than a single line, in a. routine call - where the parameters and
the routine name may be over several lines, etc.

Output Routines

Mapping routines will describe a process for rewriting the
morpheme character strings into a different format - eg. one
acceptable to a synthesis program such as MUSIC V (Mathews 1969),
or non—standard digital synthesiser (Holtzman 1979), or speech
synthesiser, etc. The mapped representation is output to a new
file (cf. Chapter 7) In a morphological definition program it is
necessary to indicate what will be sent to this file and this is
done by using a system routine called by the keywords:

%OUTPIJT 	%OUTPIJTCHAR
These keywords are followed by an argument which is what is to be
output by the routine. A call of the output routine may take the
following forms:

%OUTPUT *argument*
%OUTPUTCHAR *argument*

The output file consists of what all the calls of the system
output routines send it - in the order that it is sent.

The routine may send out data in different formats. 	The
morphological mapping routines can output data in the form of
characters, or in the form of binary (1—byte) numbers .- or a
mixture of the two. It is up to the user to ensure that data is
of the correct type for use with a synthesis program or otherwise.

%OUTPUT

For %OUTPUT, the argument may be either one of four system
known words ('SPACE', 'SPACES', 'NEWLINE', 'NEWLINES') or a
bracketed expression. The system known words produce as output
the character for a space (eg. ASCII 32) or a number of spaces, a
newline or a number of newlines. If the plural forms are used
then a number must follow in parentheses indicating how many space
or newline characters are to be generated. Examples are:

%OUTPUT SPACES (3) 	producing
%OUTPUT NEWLINE 	producing

If the %OUTPUT keyword is followed by an expression - the lower
byte of the value of the expression is output as an eight—bit
binary number. For example,

%OUTPUT ((16'4)+l)
produces the binary number 01000001 as output.

%OUTPUTCHAR

With %OUTPUTCFIAR, only character symbols are produced. 	The
argument of the output routine may be either a parenthetically
bracketed character string enclosed in quotes ('") or an
expression. In the former format, the character string enclosed
by the quotes will be output as written, ie. as a string of
character symbols. To output the quote character ('") as part of
a string the single occurence of the character is represented by

181

''"" in order to distinguish it from the beginning and end
delimiters. In the second format, the result of the expression is
output as a string of character symbols (rather than as a binary
number) . For example,

%OIJTPUTCHAR ("A STRING OF CHARACTERS")
produces "A STRING OF CHARACTERS" (without the quotes), and,

%OUTPUTCHAR (11+27)
produces "38".

Mapping Routines

Mapping routines are defined by program text which may consist
of output statements calling the system output routines and any of
the statements legal in the control-function language descrbibed
in 1.24 enclosed by the keywords %MAP and %END. In an MDL file,
(ordinary) routines and functions may also call the system output
routines. The %MAP keyword must be followed by a morpheme name,
ie. a character string, which is the morpheme which the routine is
called to map into another representation. By default, any
declared morphemes for which a mapping routine has not been
defined are output as a string of characters (which are the
morpheme name without any separator characters)

An example of a mapping routine is:

I Routine maps morpheme MORPHX
%MAP MORPHX

I A note-card is written with 4 parameters
for starting time, instrument, length of

I note and frequency respectively
SOUTFUTCHAR ("NOT 	")
%OUTPUTCHAR (TIME) 	; ! TIME is a

I variable equal to total time elapsed
SEP 	; ! produces a TAB character
%OUTPUTCUAR (INSTR) 	;I function instrument

selects an instrument and returns its number
SEP
DUR 	;! routine DUR determines the

I duration for this note, outputs it
itself and updates the variable TIME

SEP
%OUTPUTCHAR (114 140 11) 	 ; I same as %OUTPUTCHAR (2440)
%OUTPUT NEWLINE

% END

which might produce,
NOT 	150 	2 	20 	2140

In the original implementation of the non-standard digital
synthesis instrument (Holtzman 1978) performance data was defined
as pairs of bytes, where the first byte contained the number of
the sound object to be performed, and the second byte contained
the duration in SOths of a second - both were represented as
binary integers. A mapping routine which produces such
performance data might take the form:

182

%MAP MORPUX 	 I
%OUTPUT (1) 	;i MORPHX is sound object// 1
%OUTPUT (OUR) 	;! function OUR returns a duration

%END

The PASCAL Implementation

Using the IMP implementation of the GGDL programming language
it was possible to determine not only whether using generative
grammars could usefully aid composers in the process of
composition, but also whether the language used for describing the
grammars of languages, ie. CGDL, was suitably designed and whether
any improvements could be made. Results using the GGDL
implementation demonstrate that grammars can usefully aid
composers and that the GGDL language is a flexible programming
language to use for describing the grammars of music languages.
The division of the generative process into three distinct stages
has several advantages and the use of rewrite rules and the
separation of control of rewriting in the grammar definition is an
elegant way to divide the definition process.

It was no suprise, however, that a number of inadequacies of
the language became apparent with its use. Therefore, based on
experience gained using the IMP version of the GGDL language, a
number of alterations and extensions were made for a new
implementation of the GGDL-compiler. For purposes of portability,
it was decided that the new implementation should be made in a
language available at many computing centres. The PASCAL
programming language was chosen for the implementation of an
extended GGDL compiler.

The choice of PASCAL itself required several changes to be made
to the GGDL language specification. The most significant of these
was the operators available for arithmetic expressions. In PASCAL
it is not possible to easily and efficiently implement the logical
operators that were available in the original specification and
IMP implementation.

Some of the changes to the GGDL language were a result of
inconveniences and difficulties imposed by the rigid program
format of the original specification. The specification of the
PASCAL implementation will permit declarations, routine and
function definitions and rewrite rules to be defined in any order,
though the order of the rewrite rules' definition will still be
significant. The definition of a control-function may be above or
below the rule with which it is associated, rather than at the top
of the program. It will also permit nested routine and function
definitions.

The data-types available will be also extended to include two
dimensional arrays and constant integers and arrays. as well as
the declaration and use of strings and string functions. A string
function will be allowed to be called to generate a RHS in a
rewrite rule; rather than returning an index to the selection the
function will return a string which itself will be the selection.

183

In addition to several operators that may be used to relate
strings, such as concatenation and pattern matching, several
system routines have been provided for manipulating strings.
Because the strings are strings of terminals and non-terminals,
where character sub-strings are the names of these objects, it is
possible to treat the strings like 'linked names' . System
routines permit the the removal of the 'head' or 'tail' of the
string, or the joining of a new 'head' or 'tail' to the string.

The effectiveness of these improvements can only be gauged
after further experience with the language. The implementation of
a PASCAL GGDL compiler and GGDL-Generator compiler-compiler has
not yet been completed.

184

Appendix 2: Example GGDL Programs

An Example GGDL Grammar Program

This is an example GGDL generative grammar definition program.
The generative grammar defined by the program describes a language
which includes among many utterances, the note—duration structure
of the Trio (in an 'abstract' representation) from Schoenberg's
Piano Suite, Op. 25 (Schoenberg 1925) of Figure 4-2. This program
was used to generate the 'abstract' (ie. morphological)
representation of the structure of the composition shown in Figure
11_3 • With minor changes, initialising "OB.JNUMBER" to 19' rather
than 1 12' in the 'initialisation block' and changing 'Meta—Rule 1'
so that it only generated a 'SERIES' from nine objects, the same
program was also used to generate the • abstract structure of the
composition given in Figure 4._4.

I ° A GGDL GRAMMAR DEFINITION PROGRAM
%GGDL

I program declarations
%functionspec dstringsel
%functionspec selectduration
%integer objcnt, objnumber, seriescnt, fsstring

%initialize
objnumber:12 	;! "objnumber" is total number of sound objects.
fsstringr3 	; I The third rhythmic group will be generated using

a finite—state metaproduction rule (cf. Meta—
1 Rule 3 "DURATIONS FOR THIRD SERIES")
I "objcnt" and "seriescnt" by default are initialized

%end 	 ;i to zero

I function definitions

%function selectdurationstring
%integer selection

I Each time the function is invoked it selects a string
of duration values for a new SERIES of objects.
For the 'fsstring' of each STRUCTURE it selects the

I string of durations generated by Meta—Rule 3.
Otherwise the string selected is that generated by
Meta—Rule 2.

I a global variable counts the SERIES of a STRUCTURE
seriescnt=seriescnt+1

%if fsstring=seriescnt %then
selection2

% else
selection-_1

%finish

reset "seriescnt" ie. modulo 14

185

%if seriescntr4 %then
seriescnt=0

%finish

I selects "RHYTHM" string type
%resultrselection

% end

%functiori selectduration
function "selectduration" selects a morpheme which
represents a duration value.

I a global variable counts the objects in the series
objcntrobjcnt+1

%if objcnt <= 6 %then
%if objcnt:6 %then %resultr2 %else %resultl %finish

%else
%if objcnt:objnumber %then

resets "objcnt" when "SERIES" is complete
objcnt:0
% result:

%else
% result: 3

%finish
%finish

% end

°°°° GRAMMAR RULES

"SERIES" represents a string of all the objects
— the total number being assigned to "objnumber" —
in which each object occurs once only.
"SERIES" acts as a variable and with different generations
using this grammar one can alter the ordering of objects in

I the group without affecting the macro—structure.
I META—RULE 1
" SERIES —> # objnumber /i I objl, obj2, obj3, objt, obj5,

objô, obj7, obj8, objg, obj10, objil, obj12"
I META—RULE 2
" DURATIONS OF SERIES —> #objnumber# <selectduration>

duration 1, . duration 1 * 3, . duration 2, . duration 2 * 3, "
META—RULE 3

" DURATIONS FOR THIRD SERIES —> I/ objnumber # *
duration 2, . 3 . 1 . 0 • 0
duration 1, ;o . 0 2 . 2
duration 3, . 0 . 1 . 0 • 0
duration 4, .1.0.0.0)"

186

I THE REWRITE RULES

I The macro structure of the composition will always consist
I of two "STRUCTUREs" in canon. the structures have the same

'SERIES-RHYTHM' relations such that the grammar defined may
generate macro-equivalent canons with different SERIES.

I RULE 1
CANONSTRUCTURE -> voicel, STRUCTURE, voice2, STRUCTURE 2

A structure consists of four different versions
I of the SERIES, each with an associated rhythmic structure.

RULE 2
C STRUCTURE -> U 'I # M (1 (GROUP)) (RHYTHM)

I The non-terminal "VERSION-TYPE" generates a unique version of
the SERIES.

I There are eight versions - the original, the original inverted,
I the retrograde, and the retrograde inverted, and these transposed
up by an interval of a six semitones.

I. RULE 3
CVERSION-TYPEfl->! 	.Ifl.Bfl.B(Ifl)

T #611 () . T #611 (I ()) . T #6# (B
T116#(B(I)))] 	 -

The above rules generate an 'object-structure'.
I Durations for the objects of a SERIES may be generated
I either by using the function 'selectduration' to select
durations from four possible durations (cf. Meta-Rule 2)
or using a finite-state rewrite rule (cf. Meta-Rule 3).
In both cases 'objnumber' durations, ie. one duration

I for each object of the SERIES, are generated.

RULE 14

	

RHYTHM -> <selectdurationstring> DURATIONS OF SERIES
	

DURATIONS
FOR THIRD SERIES 2

% end o fpr og ram

187

An Example GGDL Mapping Program

This is an example GGDL morphological definition program. The
GGDL grammar program generates the 'abstract' structure of Figure
14...3b. The mapping program given below was used to map the
abstract representation of this structure to an easily
transcribable representation. An example of the generated output
of the GGDL grammar program using the mapping program below is
given in Figure 44-3a.

*0 %MDL MORPHOLOGICAL MAPPING PROGRAM *0
I generating output for transcription into tradtional music notation.

%MDL

%morphemeset 	;! Declarations of the morphemes.
C objl,obj2,obj3,obj4,obj5,obj6,obj7,obj8,obj9,objlO,objll,objl2 I
C voicel,voice2,duration 1,duration 2,duration 3,duration 1,

duration 1 * 3, duration 2 * 3
% end

I Declarations of routines and variables.
%routinespec writeduration (%integer)
%routinespec writedvalsy (%integer)
%routinespec seriesnumbercheck
%integer objnumber,objcnt,seriescnt,fsstring ,durval ,voiceflg
%integer measure ,entry

%initialize
objnuxnberr12 	;! "objjnumber" is total number of sound objects.
fsstring:3 	; I coordinates with %GGDL program
durval:1 	 ;! time—unit for rhythmic structure

ie. one 16th note.
% end

mapping routines

%map obji
%outputchar (1)

% end

%map obj2
%outputchar (2)

%end

%map obj3
%outputchar (3)

%end

%map obj'
%outputchar (!)

% end

2;

imap objs
%outputohar (5)

% end

%map objô
%outputchar (6)

% end

%map obj7
%outputchar (7)

% end

%map obj8
%outputchar (8)

% end

%rnap objg
%outputchar (9)

% end

%map objlO
%outputchar (10)

% end

%map obji 1
%outputohar (11)

% end

%map objl2
%outputchar (12)

% end

duration morphemes

%map duration 1
objcntrobjcnt+1
%if seriesont#fsstring %then

writeduration (durva].2) 	;! ie. 1/8th note
%else

fsatring (durval*2)
%finish
seriesnuinbercheck

% end

%inap duration 2
objcntzobjcnt-F1
%if seriescnt#fsstring %then

writeduration (durval) 	;! ie. 1/16th note
%else

fsstring(durval)
%finish
seriesnuinbercheck

%end

%map duration 3
objcnt=objcnt+1

Me

fsstring (durva]. * U)
seriesnuxbercheck

Send

%map duration
objontrobjcnt+1
fsstring (durval * 6)
seriesnuinbercheck

5 end

ie. quarter note

;! ie. dotted quarter note

Smap duration 1 * 3
objcnt:objcnt+1
writeduration (durval * 6) 	;! ie. dotted quarter
seriesnurnbercheck

Send

Smap duration 2 * 3
objcntobjcnt+1
writeduration (durval * 3) 	;! ie. dotted eighth note
seriesnumbercheck

Send

mapping "voice" morphemes
Smap voicel

voicefigri 	 indicates which voice is being generated.
seriescnt=1
%outputchar ("voicel")
%output newline
measure--1
entry:3

Send

Smap voice2
voiceulga2
seriesontr 1
Soutputchar (t?voice2fl)
%output newline
measur e=2
entry--3

Send

I routine definintions
%routine writeduration (%integer duration)

%outputchar ("(')
%outputchar (measure)
%outputchar (",")
%outputchar (entry)
Soutputohar ('0")
%output newline
entry= entry+dur ation

Sif entry > 12 %then
measure:measure+1
entry--entry-12

%finish
Send

190

%routine fsstring (% integer duration)

%if objent <: 4 %then
writeduration (duration)

%else
%if objcnt C: 8 %then

%if objcnt:5 %then
ie first of 2nd group, reset counters

Sif voicefigri %then
measure:5

%else
measurer6

%finish
entry--3

%finish
writeduration (duration)

%else
I last group

%if objcntr9 %then
ie.. first of last group, reset counters

%if voiceflg:1 %then
measure:6 	;! 	((((6*2)+(2*2))+((5*1)+(1*2)))*2) / 12 : 4

ie. the first two "dvalsx" groups are
I 2 measures each. "dvalsy" will also be two
measures: 	6 - 4 : 2

% e is e
measure:7

jfinish
entryrl 3

output silence as twice duration
of last - ie 9th object - object of group

entry: entry_(duration*3)
writeduration(duration)
%outputchar (I's")
writeduration(duration*2)
reset "entry" and "measure" as overflow into next measure

%if voiceflg:1 %then
measure:6

%else
measurer?

%finish
entry: 1 3_(duration*3)

%else
other objects of the group

entry--entry—duration
writeduration (duration)
entry: entry—duration

if last of group reset counters to 'normal'
%if objcnt:objnunber %then

%if voiceflg:1 %then
measurer7

% else
measurer8

%finish
add extra silence so next group

begins on upbeat

191

%outputchar ("s")
entryrl
writeduration (2)

%finish
%finish

%finish
%finish

% end

%routine seriesnuinbercheck
checks if it is end of object—group and resets

I counters if it is
%if objcntobjnumber %then
abjcnt=O
seriescntrseriescnt+1

%finish
% end

%endcfprorarn

192

Appendix 3: A Grammar for Generating Non-Standard Sound
Synthesis 'Functions'

A GGDL grammar program which describes the grammar the
'automated non-standard synthesis instrument' (see Chapter 6) uses
to generate 'Functions' is given below. The grammar generates a
program of virtual instructions. In order to execute code
generated on a 'real' machine, a mapping program needs to be
defined to 'compile' the virtual program.

In the case of the 'automated non-standard synthesis
instrument' described in this thesis, the grammar was directly
implemented on the PDP-15/40 which supports it. That is, rather
than use the GGDL grammar program and a mapping program, a more
efficient implementation was written for the PDP-15/40 which runs
as a 'system utility' under the operating system designed and
implemented to support the synthesis instrument (see Chapters 6
and 7).

In this implementation a user may influence the generation of
non-standard descriptions of sounds by assigning values to a
number of variables in the control mechanism of the grammar of the
synthesis instrument. The variables may be used, for example, to
control the number of Functions generated with a particular set of
grammar variables (ie. 'numberoffunctions' in the grammar) , the
bounds for the number of 'statements' in a Function
('minstatements' and 'maxstatSnents'), the relative occurrence of
the different types of statement expressions (ie. 'memoryweight'
'randomweight' and 'operstringweight'), the bounds of the number
of operators in an expression (ie. 'minoperators' and
'maxoperators'), and the relative occurrence of assignment and
conversion statements (ie. 'assignstatement' and 'outstatement').
Other variables control the number of constants and variables and
the relative frequency of their use in a Function.

The values for the variables of the grammar are transmitted as
'messages' from the VAX-11/780 to the PDP-15/ 110 and similarly,
instructions for writing and performing Functions may be
transmitted. In this implementation, it is not possible for a
user to alter the rewrite-rules or the available control
functions.

In the grammar below, the control functions are written
immediately below the rewrite rule with which they are associated.
In the IMP-implementation (see Appendix 1) of GGDL, all functions
are defined before any rewrite rules are given; this freer format
is permitted in the PASCAL-implementation of the GGDL language.

193

*********4e************ GGDL Grammar for ***************************

***** Non-Standard Noise Synthesis Program Code Generation

This is a Generative Grammar Definition Language program
which describes the grammar the Non-Standard Digital Synthesis
machine uses to generate noise-synthesis programs (ie.
compose noises). 	From the 'Non-terminal' SOUNDOBJECT the
program code for a 'Function' (using a virtual instruction set)
is generated.
The user may control the generation of the grammar by
the assignment of the 'control' variables of the grammar.
The Function written will consist of a string of virtual
machine instructions which can be mapped onto the machine
instruction set of a given machine with a 'morphological
mapping' program (which may also be defined in GGDL).

underlined integer names are user assignable
control variables of the grammar.

I CAPITALIZED character strings are the 'non-terminals'
of the generative grammar.

I The 'terminals' of the language - ie. the virtual
machine instructions - are lower case character strings.

%GGDL
the selection functions used for rewrite control

%functionspec numberof statements, chooseoperation, nunberofoperators,
chooseoperands, choosestatementtype

RANDOM is a system known function which returns a
I number randomly selected between two bounds it
I needn't be declared

jfunctionspec random (%integer(2))

I the user-assignable control variables
%integer numberoffunctions, minstatements, maxstatements

memoryweight, randomweight, operstringweight, minoperators,
maxoperators, outstatement, assignstatement, minvars, maxvars,
mincons, maxcons, varweight, conweight

I *° The REWRITE RULES °°

C SOUNDOBJECTS -> 11 numberoffunctions /i FUNCTION 3

C FUNCTION -> # nunberofstatements Ii STATEMENT

%function numberofstatements
%result = random (minstatements, maxstatements

%end

I STATEMENTs may be memory-fetches, strings of operators or the
random operator - the result of the computation (left

I in the accumulator) is sent to DAC or deposited in memory.
STATEMENT -> STATEMENT-TYPE, OPERATION, 3

C OPERATION -> C chooseoperation > random . memory-fetch, OPERAND

194

I

OPERATORSTRING 1

%function chooseoperation
%integer temporary
temporary = random C 1, memoryweight + randomweight +

operstringweight)
ftc temporary <: memoryweight %then

%result r 1
%else

ftc temporary <z memoryweight + randomweight %then
%result r 2

%else
%result = 3

%finish
%finish

% end

[OPERATORSTRING -> # numberofoperators # OPERAND, OPERATOR, OPERAND

%function numberofoperators
%result = random (minoperators, maxoperators

% end

This 'context-sensitive' rule ensures that operation syntax
is correct where operators are in strings

[OPERAND, OPERAND -> OPERAND,

In this finite-state transition matrix all the transition
values C 	t) are independently assignable.

OPERATOR -> * <10>
C add(+) t • 	t • 	t 	. 	t t 	. t . 	t • 	t t t
C conj(&) •t .t • t 	.t 	• t •t .t .t .t -t
C anti!) .t .t •t 	,t 	.t .t .t •t ,t .t
C minus(-) ,t •t .t 	.t 	.t .t •t •t •t -t

mult(') .t ,t •t 	,t 	•.t •t .t .t .t .t
C div(%) .t •t .t 	.t 	.t •t .t •t . 	7t ..t
C disj .t • t .t 	.t 	.t _t . _E . • t .t .t
C equiv .t .t •t 	•t 	•t •t .t •t .t .t
C implic .t .t .t 	•t 	.t .t _t . .t .t .t
C exclu •t •t .t 	• t 	.t • t .t .t • t • t

I OPERANDS may be either VARiables or CONstants
C OPERAND -> < chooseoperand > VAR. CON I

%ftmction chooseoperand
%if random C 1 , varweight + conweight) <: varweight %then

%result 	1
%else

%result 2
%finish

%end

I The "I" directly after the rewrite arrow indicates
I to the generative mechanism that each of the right-hand
I aide terminals may only occur once until all others

I C
p J_i

have occurred at least once. This helps ensure semantic
I consistency by prohibiting the use of the same operand

twice in one phrase!
[VAR —>var1 .var2. ,,.varNj;! where Nz

	

I 	random (minvars, maxvars

[CON —> I coni 	con2 	conN] I where N
! 	random (mincons, maxcons

C STATEMENT—TYPE —> C choosetermin > outputtoDAC . assign, VAR

%ftzction choosetermin
%if random (1, outstatement + assignstatement) Cr

outstatement %then
%result r 1

%else

	

%result 	2
%finish

Send

Sendofprogram

196

Appendix 4: Using the GGDL CAC System

The Edinburgh GGDL composition/ synthesis system consists of a
two computer processors interconnected to permit the parallel
performance of tasks. These include the generation of data
required for performance, performance, ie. synthesis, of sounds,
and control of 'message' transmissions. A user interactively
sends commands to the control processor (ie. the VAX-11/780) from
a video terminal. One synthesis instrument may be controlled, ie.
the PDP-15/40 (see Chapter 7).

GGDL Compiler

The compiler accepts both GGDL grammar and GGDL morphological
mapping definition programs prepared using a standard text editor.
On VAX, the compiler is run with the 'source' GGDL definition file
as input and the 'object' file as the first output stream.
Optionally, a second output stream may be specified for an
alpha-numeric listing of the generated object code (which may be
useful for debugging) . 	Compilation errors are reported to the
user's terminal. 	A list of error messages is given in Figure
Ak-i.

A run of the compiler on VAX might look like:

$GGDL
Streams: SOUECE/OBJECT,LISTING

GGDL-Generator

The GGDL-generator program accepts three input streams and one,
and optionally a second, output stream. The input streams
correspond to 1) the 'initialising' string for generation, 2) the
compiled GGDL grammar definition, and 3) the compiled GGDL
morphological definition. Either of the latter two (but not both)
may be omitted in which case either an 'abstract' structure will
be output (ie. a morpheme string) or the input to stream one will
be morphologically mapped (without grammar generation) . 	This
enables one to generate and map structures independently. 	The
specification of output streams is optional. The output of the
grammar and/or morphological processing is to stream 1 - which by
default is the user's terminal. A trace of the generation and/or
mapping processes can be output to stream 2. This may be useful
for debugging purposes.

A running of the GGDL-Generator (invoked as "GGDLGEN") might
look like:

$GGDLGEN
Streams: STRING,GRAMMAR,MAPPING/STRUCTURE,DIAGNOSTICS

Run-time error messages executing either the grammar or mapping
program are reported to the terminal. A list of the error
messages is given in Figure A4-2.

197

COMPILER ERROR MESSAGES

Any errors detected by the compiler will generate error messages
indicating the type of error found, the line number (in the input
stream) and the text of the line where the error was found. The
following types of errors may be detected:

ARRAY BOUNDS FAULT 	 - array bounds exceeded in an %INITIALIZE
block statement

BRACKETS DO NOT BALANCE 	- incorrect bracketing in an expression
COMMAND NAME ERROR 	 - a keyword command unknown to the

compiler or illegal in its context
DUPLICATE 	 - duplicate name of same type in declarations
? EXIT 	 - queries whether exit from a cycle loop is

possible - this is not a fault to the compiler
FORM 	 - improper form in statement
IF-THEN-CLAUSE MISSING 	- generated by an extra %FINISH
IMPROPER IF-THEN-ELSE SYNTAX - eg. %ELSE out of place
INCORRECT NUMBER OF ARGUMENTS - in a function or routine
NAME 	 - an undeclared name
CYCLE MISSING 	 - generated by an unmatched %REPEAT statement
RESULT ILLEGAL IN ROUTINE 	- %RESULT found in a routine definition
RETURN ILLEGAL IN FUNCTION 	- %RETURN found in a function definition
THEN MISSING 	 - %THEN not found after %IF statement
TYPE ERROR 	 - eg. a routine or function parameter does not

- match its type specification

The following error messages are given with a line number only at
the end of a routine or function definition:

FINISH MISSING 	 - incomplete IF-THEN-FINISH clause
LABEL MISSING 	 - a jump in text is made to a label not used
REPEAT MISSING 	 - %CYCLE loop without matching %REPEAT statement
RESULT MISSING 	 - %RESULT statement not found in a function

If certain faults are detected by the compiler, compilation will be
abandoned.

ILLEGAL PROGRAM HEADER STATEMENT
LEXEME SET DECLARATION BLOCK MISSING - in an %MDL program
TOO MANY ERRORS

Figure A4-1: 	GCDL compiler error messages.

198

RUN-TIME ERROR MESSAGES

Errors may occur during the execution of either a compiled %GGDL
or %MDL program by the GGDLGEN generator. 	An error message is
transmitted and execution of the program halted. 	Some run-time
diagnostics may also be given. 	The error messages that may be
transmitted are:

INPUT STREAM 2 IS NOT A PROPERLY COMPILED %GGDL GRAMMAR DEFINITION FILE
- not a compiled %GGDL program as input

INPUT STREAM 3 IS NOT A PROPERLY COMPILED %MDL MORPHOLOGICAL DEFINITION FILE
- not a compiled %MDL program as input

With the following messages the contents of the program counter,
the number of the rule or mapping function name (in a %GGDL or %MDL
program respectively) , and the dynamic listing of the program are
also given.

ARRAY BOUNDS FAULT IN GLOBAL ARRAY - array bound index out of specified
ARRAY BOUNDS FAULT IN LOCAL ARRAY 	bounds
ILLEGAL INSTRUCTION 	 - attempt to execute an illegal instruc-

tion
CONTROL FUNCTION HAS RETURNED FOR RHS SELECTION A VALUE OUTSIDE OF BOUNDS
OF RHS ELEMENTS 	 - control function has selected

element out of bounds

The below error messages also print the generated string at the
time of the error - ie. with remaining structural change indexes,
etc. - indicating the transform being executed.

UNDECLARED MORPHEME 	 - undeclared morpheme found either at
transformational or morphological
mapping stage of generation -. the
morpheme is given

RIGHT BRACKET IS MISSING FOR TRANSFORMATIONAL ARGUMENT
- incorrect bracketing

LEFT BRACKET IS MISSING FOR TRANSFORMATIONAL ARGUMENT
- incorrect bracketing

ARGUMENT IS NOT A VALID NUMBER 	- illegal transpose or merge number
UNKNOWN TRANSFORMATION - IE. STRUCTURAL CHANGE INDEX

- unknown transformation indexed
INSUFFICENT NUMBER OF OBJECTS FOR MERGE - not the same number of objects

in all sets of merge argument

Figure A4-2: GGDL-Generator run-time error messages.

199

Graphics Editors

DRAW: Draw is a simple graphic editor with a small menu of
commands which may be used to define/edit waveforms (consisting of
4096 12-bit samples) or envelopes (with an arbitrary number of
turning points).0) It is invoked as "DRAW". The program will
prompt the user to set the "Mode". This may be either a 'Wave' or
'Envelope'. Having set the mode, a user may then use the menu of
commands to define a set of points in a 4k by 4k window - which
correspond to the real points of a waveform (the points are used
for interpolation) and the virtual points of an envelope. The
available set of commands is:

1) Waveform and envelope definition files, as well as performance
files, and so on, are kept as alpha-numeric files. This permits
any files to be edited and inspected with a standard text editor
as well. The format of definition files generated using the
graphic editor is compatable with the format of messages for
transmission to the synthesis instrument. That is, files
generated using the graphics program may be sent as messages to
the PDP-15/ 140.

P(x,y) - This defines a point by stating the x and y
coordinates in the 14k by 11k window by integer values between 0 and
4095. The point will be 'marked' and the wave or envelope shape
drawn.

C - This invokes the cursor. The x and y coordinates may be
set by use of a cursor. When the cursor is set any character on
the keyboard may be hit and the point will be 'marked' and the
wave or envelope shape drawn.

0 - This may be used to delete a point. 	The program will
prompt for the X-coordinate. If the user responds with a newline,
the cursor may be used to define the point, otherwise an integer
must be given.

Store (or Save) - The program will prompt for a filename and
will store either in wave or envelope format the data from the
shape drawn. The default extension of the filename is either
".WAV" or ".ENV". Waves are stored as properly formatted messages
which may be transmitted to instruments.

Fetch - This command 'fetches' from memory a file containing
data for either a wave or envelope. Only files generated by use
of the store command may be used. The program will prompt for for
the filename. By default the program takes ".ENV" or ".WAV" as
the filename extension.

- All the above commands are applied to the currently 'set'
wave or envelope (initially 1 1 1). Up to four waves or envelopes
may be edited at one time - all defined waves or envelopes present

200

appearing on the screen. This command (%C) allows one to exit
from the definition/editing process of a wave or envelope using
the above commands. After the command '%C' the program will
prompt with "Set", a request to change to one of possibly four
shapes being defined (user responds with an integer between 1 and
4). If there is no data present for the set editing file, the
program will prompt with "Mode". The status of all files being
edited is kept on the top part of the screen.

B - This resets the presently edited file, ie. erases the wave
or envelope and clears the file. The program will prompt with
"Mode".

$ - This will exit from the program and return the user to
monitor level. All files not stored are lost.

PLOT: Plot is run with a specified input stream - either a wave or
envelope - generated by the DRAW program, any other program or
manually with the text editor. It plots the wave or envelope on
the screen and permits the visual inspection of waves or envelopes
not generated by the DRAW program. The file to be plotted must,
in the case of a wave, consist of 4096 points (integer values
between 0 and 4096), and, in the case of an envelope, an arbitrary
number of x and y coordinates.

A run of the PLOT program on VAX might look like:

$PLOT
Streams: FILE

Utility Programs

Any programs available on the central processor system may be
accessed and run from monitor level. These may include user
defined programs, system editors, compilers, graphics, VLSI
design, etc.

Communications

'Messages' may be transmitted from VAX to the PDP-15/40.
Messages may be of five types:

Performance-data Messages
Execution Commands
Waveform Definitions
Function-writing control data (for Non-standard

Synthesiser)
Abort Command

A user will prepare messages as text files - either with an
editor or directly typing in a message whilst inside the message
compilation/transmission program. The user's text must be checked
for correct formatting and data types, compiled and assembled into
a machine readable representation that can be transmitted (as
bytes) between the two processors, and then packed with a correct
identifying header and end-of-file character. This can be done by
using the commands available for instructing the message

201

compilation and transmission program, invoked as TALK. 	The
available set of commands is:

P - Transmit a 'Performance Data' message. 	The program will
prompt for the input stream. This may be either a filename, or,
if the stream prompt is answered with a newline, direct input from
the terminal.

X -. Transmit an 'execution-command' message. 	The program will
prompt for the execution command. These are:

E - execute performance data

W - write Functions (on non-standard synthesiser) using
- 	received Function-Data messages.

G - write Functions and then execute performance data.

P -- reset performance data (ie. erase all P-messages
received)

0 -. clear waveform tables (ie. erase. all 4-message
received).

R - reset (le. overwrite any written) functions

F - clear Function writing control information (for PDP-15
non-standard synthesiser)

T -. clear Operator Transition Matrix 	for POP-15
non-standard synthesiser)

Z -. reinitialise instrument (ie. erase all messages
received).

W - Transmit a waveform definition -, ie. 1096 12-bit samples. The
program prompts for the input stream to which the user responds
with a filename, by default, its extension is ".WAV".

F - Transmit Function writing control information for the
non-standard synthesiser. Data in 'F-messages' corresponds to the
non-standard synthesisers grammar's control variables (see
Appendix 3). The program prompts for the stream which may be
either a filename or newline (ie. data input from terminal)

T - Transmit values for the Operator Transition Matrix for the
non-standard synthesiser. The program prompts for the stream
which may be either a filename or newline (ie. data input from
terminal).

A - This aborts whatever the instrument is doing. 	If it is
performing it deactivates the performance processes and waits for
further messages containing command instructions. If the
non-standard synthesiser is writing Functions, it abandons this
process.

202

- which will be ignored by the
I' and all characters until the
Comments may not be included

Messages may contain comments
compiler. These are preceded by
next newline line are ignored.
within statements in a message.

Performance Messages consist of three types of statements (or
instructions) for the performance control process of a given
instrument. These are 'synthesiser identifiers' which tell the
performance control process what type of synthesis is to be
performed (subsequent performance data must be in the appropriate
format for that type of synthesis), 'wave identifiers' which tell
the performance control process which waves are to be used for
synthesis (if waves are used!) , and performance data - ie. an
event queue of sounds to be synthesised.

'Synthesiser identifiers' take the form:
I=n

where 'n' is an integer value identifying the synthesis technique
to be used. Only one type of synthesis technique may be used at a
time (on any given instrument). For values of 'n':

1 r Direct-waveform synthesis (one voice only)
3 = Non-standard synthesis (on PDP-15 instrument only)

r Direct-waveform synthesis (in two voices)
5 = Direct-waveform synthesis with envelope shaping

(one voice only)

6 r Waveshaping Synthesis

By default, the synthesis method used it set to direct-wave
synthesis.

The samplingrate on the PDP15/40 for direct-wave synthesis is
(for one voice) 30,927 hz. - with a maximum frequency of one
quarter that. For two voices, approximately half of that (15472),
one voice with envelope shaping just below that (13897)

'Wave identifiers' take the form:
W = n

where 'ii' is an integer value between 1 and ! selecting the nth
wave transmitted to the given instrument (as a message) . By
default, the first wave transmitted is selected.

Performance Data varies for the type of synthesis to be
performed. In the first case, for direct wave synthesis, an event
consists of a 'P' (ie. perform) statement consisting of a
frequency (a 'real-integer' value) and a duration (in 50ths of a
second) Values are separated by a comma and enclosed in
parentheses. For example,

P(1000,50)
which will perform a wave at a frequency of 1000 hz. for I second.
Silences are written as 1 3' statements with a duration given in
SOths of a second, eg.,

3(100)
which performs a two second silence.

203

For non-standard synthesis, performance data consists of
voice identifiers - either 'Vi' or V2' for the two voices possible
- and event data. Events are specified by either an integer value
identifying the noise to be performed or an '5' (indicating a
silence), and a duration given in SOths of a second. 	The
performance data for a voice is terminated with a '$' . Data for
voice 1 to be performed simultaneous with voice 2 must precede the
data of the second voice. 	If, after data for voicel and/or
voice2, more data is given, its performance will begin after the
completion of the performance of any preceding data. All data for
the non-standard synthesiser must be terminated with a
Performance data for the non-standard synthesiser could be:

Vi
1,100
2,100
$
V2
5,100
1,100
2,100
$
Vi
1,100
$
$

Performance data for direct wave synthesis in two voices is
specified 	as 	that 	for 	direct-wave 	synthesis 	(ie. 	If

P(frequency,duration) 11 etc.) with voice identifiers (as in
instrument 3) and an exit from the instrument indicated by a
(after the dollar closing the last voice's data).

Waveform Messages consist of a list of 11096 waveform samples of
integer values between 0-4095 (ie. 12-bits). Values must be
separated by newlines. The message must be terminated with '$'

Function-Data Messages consist of "Index/Value" pairs (terminated
with a

Indices are numbers between 1 and 16 and refer to the user
assignable control variables of the POP-15 Non Standard Noise
Synthesis Program Generator Grammar (see Appendix 3).

1 = number of functions to be written with the data
2 r minimum number of statements in a function
3 r maximum number of statements in a function
11 r operator-statement weight
5 = memory-statement weight
5 = random-statement weight
7 = output statement weight
3 r assignment statement weight
9 = minimum number of operators in a operator statement
10 = maximum number of operators in an Operator statement
11 = variable weight
12 = constant weight
13 = minimum number of variables (for a function)

'11
'L)

14 : maximum number of variables
15 = minimum number of constants (for a function)
16 : maximum number of constants

Values must be of appropriate size (0-256). A maximum of 30
functions (in total) may be - written, consisting of no more than
500 statements. Each function may have a maximum of 25 variables
and 25 constants. Where values do not make 'sense' — eg. lower
bound is greater than upper bound - the system will impose
semantic consistency on the values.

Packets are terminated with '$'.

An example Function-Data Packet is:
I This Function-Data Packet generates a Ramp Wave
if only the addition operator is permitted in
statements (ie. Operator Transition Matrix (1,1)r1)

I Two statements are generated. Though both are
I indicated as assignment statements, the program
generator forces the second statement to be an

I output statement to attempt to ensure semantic
I consistency: no sound will be generated if no values
I are output to the D-A convertor. The operator
phrase will always add a constant and a variable
and assign the result to the variable: ie. X:X+Y.
The assignment phrase will output the same expression,

I ie. DAC <— X+Y. This generates a ramp-wave. Both
values will be used in the expressions as values

I are not used twice, a system imposed constraint to
ensure that 'senseless' statements are not generated
(see Chapter 6), and there are only two values that.

I may be used: one constant and one variable.
1=1
2:2
3:2
11:1
5:0
6=0
7=0
8=1
9=1
10:1
11=1
12:1
13=1
14:2
15:1
16:1
$

205

Operator Transition Matrix Messages consist of "Two-dimensional
array Index/Value" pairs (terminated with a 's').

The indexes to the two dimensional array refer to the Operator
Transition Matrix of the PDP-15 Non-standard Noise Synthesis
Program Generator Grammar (see Appendix 1) - a 10 by 10 matrix.
The index is written as two integer values corresponding to the
matrix row and column, separated by a comma (' ,') and enclosed by
parentheses.

Values must be integers between 0-255.

Messages are terminated with '5'

An example Operator Transition Matrix Message is:

This is an Operator Transition Matrix Message
(1,1)=10 	;i This permits addition to follow addition

;! Multiplication may follow addition
(1.5)=20 	; (twice as often as addition follows addition)
(5,1):10 	;! Multiplication is followed by addition

$

The transmission of messages may be compiled and transmitted in an
interactive manner from a terminal connected to the control
processor. The control processor transmits the message to the
synthesis instrument and conveys to the user any error messages
received from the synthesis instrument. A conversation might look
like:

$TALK

COMMAND: X
Execution Command:E

PDP-15 cannot execute command "E"
Performance Data-packet required

COMMAND:P
Stream:
P(1000,100)
$

COMMAND: X
Execution Command: £

PDP-15 cannot execute command "V'
Require more waveforms for performance

0 waveforms defined
1 required for performance

206

COMMAND: W
Stream:SINE .WAV

COMMAND: X
Execution Command:E

COMMAND: $

$

In this conversation, the 'message' transmission program is run -
invoked as "TALK". A request to perform is sent to the PDP-15/40.
The 	PDP-15/40 	cannot 	perform without 	performance data.
Performance data is typed at the console. It specifies the
performance of a pitch of 1000 hertz for 2 seconds (ie. 100 * 50th
second, the default clock setting) using the default, ie. the
first transmitted, waveform. Again, a request to perform is sent
and the PDP-15/ 140 responds that further data is required, the
waveform. When performance messages are received they include a
header specifying how many waveforms and non—standard noises are
required to execute the event—queue. In this case, one waveform
is required, but none have been transmitted to the PDP-15/40. A
sine wave is transmitted and the performance data is then
executed.

207

