98 research outputs found

    Management of children with congenital nephrotic syndrome: challenging treatment paradigms

    Get PDF
    Background: Management of children with congenital nephrotic syndrome (CNS) is challenging. Bilateral nephrectomies followed by dialysis and transplantation are practiced in most centres, but conservative treatment may also be effective. / Methods: We conducted a 6-year review across members of the European Society for Paediatric Nephrology Dialysis Working Group to compare management strategies and their outcomes in children with CNS. / Results: Eighty children (50% male) across 17 tertiary nephrology units in Europe were included (mutations in NPHS1, n = 55; NPHS2, n = 1; WT1, n = 9; others, n = 15). Excluding patients with mutations in WT1, antiproteinuric treatment was given in 42 (59%) with an increase in S-albumin in 70% by median 6 (interquartile range: 3–8) g/L (P < 0.001). Following unilateral nephrectomy, S-albumin increased by 4 (1–8) g/L (P = 0.03) with a reduction in albumin infusion dose by 5 (2–9) g/kg/week (P = 0.02). Median age at bilateral nephrectomies (n = 29) was 9 (7–16) months. Outcomes were compared between two groups of NPHS1 patients: those who underwent bilateral nephrectomies (n = 25) versus those on conservative management (n = 17). The number of septic or thrombotic episodes and growth were comparable between the groups. The response to antiproteinuric treatment, as well as renal and patient survival, was independent of NPHS1 mutation type. At final follow-up (median age 34 months) 20 (80%) children in the nephrectomy group were transplanted and 1 died. In the conservative group, 9 (53%) remained without dialysis, 4 (24%; P < 0.001) were transplanted and 2 died. / Conclusion: An individualized, stepwise approach with prolonged conservative management may be a reasonable alternative to early bilateral nephrectomies and dialysis in children with CNS and NPHS1 mutations. Further prospective studies are needed to define indications for unilateral nephrectomy

    Unprecedented staining of polar lipids by a luminescent rhenium complex revealed by FTIR microspectroscopy in adipocytes.

    Get PDF
    Fourier transform infrared (FTIR) microspectroscopy and confocal imaging have been used to demonstrate that the neutral rhenium(i) tricarbonyl 1,10-phenanthroline complex bound to 4-cyanophenyltetrazolate as the ancillary ligand is able to localise in regions with high concentrations of polar lipids such as phosphatidylethanolamine (PE), sphingomyelin, sphingosphine and lysophosphatidic acid (LPA) in mammalian adipocytes

    Tamarindus indica Extract Alters Release of Alpha Enolase, Apolipoprotein A-I, Transthyretin and Rab GDP Dissociation Inhibitor Beta from HepG2 Cells

    Get PDF
    Background: The plasma cholesterol and triacylglycerol lowering effects of Tamarindus indica extract have been previously described. We have also shown that the methanol extract of T. indica fruit pulp altered the expression of lipid-associated genes including ABCG5 and APOAI in HepG2 cells. In the present study, effects of the same extract on the release of proteins from the cells were investigated using the proteomics approach. Methodology/Principal Findings: When culture media of HepG2 cells grown in the absence and presence of the methanol extract of T. indica fruit pulp were subjected to 2-dimensional gel electrophoresis, the expression of seven proteins was found to be significantly different (p<0.03125). Five of the spots were subsequently identified as alpha enolase (ENO1), transthyretin (TTR), apolipoprotein A-I (ApoA-I; two isoforms), and rab GDP dissociation inhibitor beta (GDI-2). A functional network of lipid metabolism, molecular transport and small molecule biochemistry that interconnects the three latter proteins with the interactomes was identified using the Ingenuity Pathways Analysis software. Conclusion/Significance: The methanol extract of T. indica fruit pulp altered the release of ENO1, ApoA-I, TTR and GDI-2 from HepG2 cells. Our results provide support on the effect of T. indica extract on cellular lipid metabolism, particularly that of cholesterol

    Biomarkers of Therapeutic Response in the IL-23 Pathway in Inflammatory Bowel Disease

    Get PDF
    OBJECTIVES: Interleukin-23 (IL-23) has emerged as a new therapeutic target for the treatment of inflammatory bowel disease (IBD). As biomarkers of disease state and treatment efficacy are becoming increasingly important in drug development, we sought to identify efficacy biomarkers for anti-IL-23 therapy in Crohn's disease (CD). METHODS: Candidate IL-23 biomarkers, downstream of IL-23 signaling, were identified using shotgun proteomic analysis of feces and colon lavages obtained from a short-term mouse IBD model (anti-CD40 Rag2(-/-)) treated preventively with monoclonal antibodies (mAbs) to the IL-23 receptor (IL-23R). The biomarkers were then measured in an IBD T-cell transfer model treated therapeutically with a mAb to IL-23 (p19), confirming their association with IBD. To assess the clinical relevance of these markers, we assessed their concentrations in clinical serum, colon tissue, and feces from CD patients. RESULTS: We identified 57 proteins up or downregulated in diseased animals that returned to control values when the mice were treated with mAbs to IL-23R. Among those, S100A8, S100A9, regenerating protein 3β (REG), REG3γ, lipocalin 2 (LCN2), deleted in malignant tumor 1 (DMBT1), and macrophage migration inhibitory factor (MIF) mRNA levels correlated with disease score and dose titration of mAbs to IL-23R or IL-23(p19). All biomarkers, except DMBT1, were also downregulated after therapeutic administration of mAbs to IL-23(p19) in a T-cell transfer IBD mouse model. In sera from CD patients, we confirmed a significant upregulation of S100A8/A9 (43%), MIF (138%), pancreatitis-associated protein (PAP, human homolog of REG3β/γ; 49%), LCN2 (520%), and CCL20 (1280%), compared with control samples, as well as a significant upregulation of S100A8/A9 (887%), PAP (401%), and LCN2 (783%) in human feces from CD patients compared with normal controls. CONCLUSIONS: These studies identify multiple protein biomarkers downstream of IL-23 that could be valuable tools to assess the efficacy of this new therapeutic agent.Clinical and Translational Gastroenterology (2012) 3, e10; doi:10.1038/ctg.2012.2; published online 16 February 2012

    Trim37-deficient mice recapitulate several features of the multi-organ disorder Mulibrey nanism

    Get PDF
    Mulibrey nanism (MUL) is a rare autosomal recessive multi-organ disorder characterized by severe prenatal-onset growth failure, infertility, cardiopathy, risk for tumors, fatty liver, and type 2 diabetes. MUL is caused by loss-of-function mutations in TRIM37, which encodes an E3 ubiquitin ligase belonging to the tripartite motif (TRIM) protein family and having both peroxisomal and nuclear localization. We describe a congenic Trim37 knock-out mouse (Trim37(-/-)) model for MUL. Trim37(-/-) mice were viable and had normal weight development until approximately 12 months of age, after which they started to manifest increasing problems in wellbeing and weight loss. Assessment of skeletal parameters with computer tomography revealed significantly smaller skull size, but no difference in the lengths of long bones in Trim37(-/-) mice as compared with wildtype. Both male and female Trim37(-/-) mice were infertile, the gonads showing germ cell aplasia, hilus and Leydig cell hyperplasia and accumulation of lipids in and around Leydig cells. Male Trim37(-/-) mice had elevated levels of follicle-stimulating and luteinizing hormones, but maintained normal levels of testosterone. Six-month-old Trim37(-/-) mice had elevated fasting blood glucose and low fasting serum insulin levels. At 1.5 years Trim37(-/-) mice showed non-compaction cardiomyopathy, hepatomegaly, fatty liver and various tumors. The amount and morphology of liver peroxisomes seemed normal in Trim37(-/-) mice. The most consistently seen phenotypes in Trim37(-/-) mice were infertility and the associated hormonal findings, whereas there was more variability in the other phenotypes observed. Trim37(-/-) mice recapitulate several features of the human MUL disease and thus provide a good model to study disease pathogenesis related to TRIM37 deficiency, including infertility, non-alcoholic fatty liver disease, cardiomyopathy and tumorigenesis

    MLN64 Transport to the Late Endosome Is Regulated by Binding to 14-3-3 via a Non-canonical Binding Site

    Get PDF
    MLN64 is an integral membrane protein localized to the late endosome and plasma membrane that is thought to function as a mediator of cholesterol transport from endosomal membranes to the plasma membrane and/or mitochondria. The protein consists of two distinct domains: an N-terminal membrane-spanning domain that shares homology with the MENTHO protein and a C-terminal steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain that binds cholesterol. To further characterize the MLN64 protein, full-length and truncated proteins were overexpressed in cells and the effects on MLN64 trafficking and endosomal morphology were observed. To gain insight into MLN64 function, affinity chromatography and mass spectrometric techniques were used to identify potential MLN64 interacting partners. Of the 15 candidate proteins identified, 14-3-3 was chosen for further characterization. We show that MLN64 interacts with 14-3-3 in vitro as well as in vivo and that the strength of the interaction is dependent on the 14-3-3 isoform. Furthermore, blocking the interaction through the use of a 14-3-3 antagonist or MLN64 mutagenesis delays the trafficking of MLN64 to the late endosome and also results in the dispersal of endocytic vesicles to the cell periphery. Taken together, these studies have determined that MLN64 is a novel 14-3-3 binding protein and indicate that 14-3-3 plays a role in the endosomal trafficking of MLN64. Furthermore, these studies suggest that 14-3-3 may be the link by which MLN64 exerts its effects on the actin-mediated endosome dynamics

    Type I IFN Promotes IL-10 Production from T Cells to Suppress Th17 Cells and Th17-Associated Autoimmune Inflammation

    Get PDF
    Whereas the immune system is essential for host defense against pathogen infection or endogenous danger signals, dysregulated innate and adaptive immune cells may facilitate harmful inflammatory or autoimmune responses. In the CNS, chronic inflammation plays an important role in the pathogenesis of neurodegenerative diseases such as multiple sclerosis (MS). Our previous study has demonstrated a critical role for the type I IFN induction and signaling pathways in constraining Th17-mediated experimental autoimmune encephalomyelitis (EAE), an animal model of human MS. However, it remains unknown if self-reactive Th17 cells can be reprogrammed to have less encephalitogenic activities or even have regulatory effects through modulation of innate pathways. In this study, we investigated the direct effects of type I IFN on Th17 cells. Our data show that IFNβ treatment of T cells cultured under Th17 polarizing conditions resulted in reduced production of IL-17, but increased production of IL-10. We also found that IFNβ induced IL-10 production by antigen specific T cells derived from immunized mice. Furthermore, IFNβ treatment could suppress the encephalitogenic activity of myelin-specific T cells, and ameliorate clinical symptoms of EAE in an adoptive transfer model. Together, results from this study suggest that IFNβ may induce antigen-specific T cells to produce IL-10, which in turn negatively regulate Th17-mediate inflammatory and autoimmune response

    Dialysis-associated peritonitis in children

    Get PDF
    Peritonitis remains a frequent complication of peritoneal dialysis in children and is the most common reason for technique failure. The microbiology is characterized by a predominance of Gram-positive organisms, with fungi responsible for less than 5% of episodes. Data collected by the International Pediatric Peritonitis Registry have revealed a worldwide variation in the bacterial etiology of peritonitis, as well as in the rate of culture-negative peritonitis. Risk factors for infection include young age, the absence of prophylactic antibiotics at catheter placement, spiking of dialysis bags, and the presence of a catheter exit-site or tunnel infection. Clinical symptoms at presentation are somewhat organism specific and can be objectively assessed with a Disease Severity Score. Whereas recommendations for empiric antibiotic therapy in children have been published by the International Society of Peritoneal Dialysis, epidemiologic data and antibiotic susceptibility data suggest that it may be desirable to take the patient- and center-specific history of microorganisms and their sensitivity patterns into account when prescribing initial therapy. The vast majority of patients are treated successfully and continue peritoneal dialysis, with the poorest outcome noted in patients with peritonitis secondary to Gram-negative organisms or fungi and in those with a relapsing infection

    Long-term outcome of chronic dialysis in children

    Get PDF
    As the prevalence of children on renal replacement therapy (RRT) increases world wide and such therapy comprises at least 2% of any national dialysis or transplant programme, it is essential that paediatric nephrologists are able to advise families on the possible outcome for their child on dialysis. Most children start dialysis with the expectation that successful renal transplantation is an achievable goal and will provide the best survival and quality of life. However, some will require long-term dialysis or may return intermittently to dialysis during the course of their chronic kidney disease (CKD). This article reviews the available outcome data for children on chronic dialysis as well as extrapolating data from the larger adult dialysis experience to inform our paediatric practice. The multiple factors that may influence outcome, and, particularly, those that can potentially be modified, are discussed
    corecore