381 research outputs found
Observaciones sobre los crustáceos decápodos de la República de El Salvador.
Ya que de la fauna carcinológica de la República El Salvador no se tiene sino escasos conocimientos, me era un gran privilegio tener la oportunidad de investigar material de crustáceos decápodos recientemente recogido en dicha República. La colección, objeto de mis estudios, se componía principalmente de animales compilados en 1953 por el Dr. M. Boeseman, conservador del Rijksmuseum van Natuurlijke Historie de Leiden, realizando yo también investigaciones en el importante material que en el verano de 1952 coleccionó el Dr. G. Kruseman, entomólogo del Museo Zoológico de Ámsterdam. Durante su estancia en El Salvador, tanto el Dr. Boeseman como el Dr. Kruseman, fueron huéspedes del gran Instituto Tropical de Investigaciones Científicas de la Universidad de El Salvador, cuyas fructíferas iniciativas, que no cosechan la debida gratitud universal, enérgicamente estimulan a los que estudian la fauna de El Salvador
Crustacea collected by New Guinea expeditions
17 p. : ill. ; 24 cm.Includes bibliographical references (p. 17)
V-ATPase-Mediated Granular Acidification Is Regulated by the V-ATPase Accessory Subunit Ac45 in POMC-Producing Cells
The regulation of the V-ATPase, the proton pump mediating intraorganellar acidification, is still elusive. We find that excess of the neuroendocrine V-ATPase accessory subunit Ac45 reduces the intragranular pH and consequently disturbs prohormone convertase activation and prohormone processing. Thus, Ac45 represents the first V-ATPase regulator
Climatic change drives dynamic source–sink relationships in marine species with high dispersal potential
While there is now strong evidence that many factors can shape dispersal, the mechanisms influencing connectivity patterns are species‐specific and remain largely unknown for many species with a high dispersal potential. The rock lobsters Jasus tristani and Jasus paulensis have a long pelagic larval duration (up to 20 months) and inhabit seamounts and islands in the southern Atlantic and Indian Oceans, respectively. We used a multidisciplinary approach to assess the genetic relationships between J. tristani and J. paulensis, investigate historic and contemporary gene flow, and inform fisheries management. Using 17,256 neutral single nucleotide polymorphisms we found low but significant genetic differentiation. We show that patterns of connectivity changed over time in accordance with climatic fluctuations. Historic migration estimates showed stronger connectivity from the Indian to the Atlantic Ocean (influenced by the Agulhas Leakage). In contrast, the individual‐based model coupled with contemporary migration estimates inferred from genetic data showed stronger inter‐ocean connectivity in the opposite direction from the Atlantic to the Indian Ocean driven by the Subtropical Front. We suggest that the J. tristani and J. paulensis historical distribution might have extended further north (when water temperatures were lower) resulting in larval dispersal between the ocean basis being more influenced by the Agulhas Leakage than the Subtropical Front. As water temperatures in the region increase in accordance with anthropogenic climate change, a southern shift in the distribution range of J. tristani and J. paulensis could further reduce larval transport from the Indian to the Atlantic Ocean, adding complexity to fisheries management
Structural, Stability, Dynamic and Binding Properties of the ALS-Causing T46I Mutant of the hVAPB MSP Domain as Revealed by NMR and MD Simulations
T46I is the second mutation on the hVAPB MSP domain which was recently identified from non-Brazilian kindred to cause a familial amyotrophic lateral sclerosis (ALS). Here using CD, NMR and molecular dynamics (MD) simulations, we characterized the structure, stability, dynamics and binding capacity of the T46I-MSP domain. The results reveal: 1) unlike P56S which we previously showed to completely eliminate the native MSP structure, T46I leads to no significant disruption of the native secondary and tertiary structures, as evidenced from its far-UV CD spectrum, as well as Cα and Cβ NMR chemical shifts. 2) Nevertheless, T46I does result in a reduced thermodynamic stability and loss of the cooperative urea-unfolding transition. As such, the T46I-MSP domain is more prone to aggregation than WT at high protein concentrations and temperatures in vitro, which may become more severe in the crowded cellular environments. 3) T46I only causes a 3-fold affinity reduction to the Nir2 peptide, but a significant elimination of its binding to EphA4. 4) EphA4 and Nir2 peptide appear to have overlapped binding interfaces on the MSP domain, which strongly implies that two signaling networks may have a functional interplay in vivo. 5) As explored by both H/D exchange and MD simulations, the MSP domain is very dynamic, with most loop residues and many residues on secondary structures highly fluctuated or/and exposed to bulk solvent. Although T46I does not alter overall dynamics, it does trigger increased dynamics of several local regions of the MSP domain which are implicated in binding to EphA4 and Nir2 peptide. Our study provides the structural and dynamic understanding of the T46I-causing ALS; and strongly highlights the possibility that the interplay of two signaling networks mediated by the FFAT-containing proteins and Eph receptors may play a key role in ALS pathogenesis
Taxonomic diversity and identification problems of oncaeid microcopepods in the Mediterranean Sea
The species diversity of the pelagic microcopepod
family Oncaeidae collected with nets of 0.1-mm mesh
size was studied at 6 stations along a west-to-east transect
in the Mediterranean Sea down to a maximum depth of
1,000 m. A total of 27 species and two form variants have
been identified, including three new records for the
Mediterranean. In addition, about 20, as yet undescribed,
new morphospecies were found (mainly from the genera
Epicalymma and Triconia) which need to be examined
further. The total number of identified oncaeid species was
similar in the Western and Eastern Basins, but for some cooccurring
sibling species, the estimated numerical dominance
changed. The deep-sea fauna of Oncaeidae, studied
at selected depth layers between 400 m and the near-bottom
layer at >4,200 m depth in the eastern Mediterranean
(Levantine Sea), showed rather constant species numbers
down to ∼3,000 m depth. In the near-bottom layers, the
diversity of oncaeids declined and species of Epicalymma
strongly increased in numerical importance. The taxonomic
status of all oncaeid species recorded earlier in the
Mediterranean Sea is evaluated: 19 out of the 46 known
valid oncaeid species are insufficiently described, and most
of the taxonomically unresolved species (13 species) have
originally been described from this area (type locality). The
deficiencies in the species identification of oncaeids cast
into doubt the allegedly cosmopolitan distribution of some
species, in particular those of Mediterranean origin. The
existing identification problems even of well-described
oncaeid species are exemplified for the Oncaea mediacomplex,
including O. media Giesbrecht, O. scottodicarloi
Heron & Bradford-Grieve, and O. waldemari Bersano &
Boxshall, which are often erroneously identified as a single
species (O. media). The inadequacy in the species identification
of Oncaeidae, in particular those from the Atlantic
and Mediterranean, is mainly due to the lack of reliable
identification keys for Oncaeidae in warm-temperate and/or
tropical seas. Future efforts should be directed to the
construction of identification keys that can be updated
according to the latest taxonomic findings, which can be
used by the non-expert as well as by the specialist. The
adequate consideration of the numerous, as yet undescribed,
microcopepod species in the world oceans, in
particular the Oncaeidae, is a challenge for the study of the
structure and function of plankton communities as well as
for global biodiversity estimates
- …