15,457 research outputs found
Groups and semigroups with a one-counter word problem
We prove that a finitely generated semigroup whose word problem is a one-counter language has a linear growth function. This provides us with a very strong restriction on the structure of such a semigroup, which, in particular, yields an elementary proof of a result of Herbst, that a group with a one-counter word problem is virtually cyclic. We prove also that the word problem of a group is an intersection of finitely many one-counter languages if and only if the group is virtually abelian
Scene simulation for passive IR systems
The development of large mosaic detector arrays will allow for the construction of staring long wave infrared (LWIR) sensors which can observe large fields of view instantaneously and continuously. In order to evaluate and exercise these new systems, it will be necessary to provide simulated scenes of many moving targets against an infrared clutter background. Researchers are currently developing a projector/screen system. This system is comprised of a mechanical scanner, a diffuse screen, and a miniature blackbody. A prototype of the mechanical scanner, which is comprised of four independently driven scanners, has been designed, fabricated, and evaluated under room and cryogenic vacuum conditions. A large diffuse screen has been constructed and tested for structural integrity under cryogenic/vacuum thermal cycling. Construction techniques have been developed for the fabrication of miniature high-temperature blackbody sources. Finally, a concept has been developed to use this miniature blackbody to produce a spectrally tailorable source
Sapping Features of the Colorado Plateau: a Comparative Planetary Geology Field Guide
This book is an attempt to determine geomorphic criteria to be used to distinguish between channels formed predominantly by sapping and seepage erosion and those formed principally by surface runoff processes. The geologic nature of the Colorado Plateau has resulted in geomorphic features that show similarities to some areas on Mars, especially certain valley networks within thick sandstone formations. Where spring sapping is an effective process, the valleys that develop are unique in terms of their morphology and network pattern
Spaceborne memory organization, an associative data acquisition system, phase II Final report, Apr. - Dec. 1966
Spaceborne memory organization, associative data acquisition system design, and data compression technique
Magnetic forming studies
Investigation of the tensile strength dependability on the characteristic time over which a pressure pulse is applied to a metal workpiece shows that the mechanical properties of these materials are functions of the rate at which the material is undergoing strain. These results and techniques are used in magnetomotive metal forming
Shell model description of the 14C dating beta decay with Brown-Rho-scaled NN interactions
We present shell model calculations for the beta-decay of the 14C ground
state to the 14N ground state, treating the states of the A=14 multiplet as two
0p holes in an 16O core. We employ low-momentum nucleon-nucleon (NN)
interactions derived from the realistic Bonn-B potential and find that the
Gamow-Teller matrix element is too large to describe the known lifetime. By
using a modified version of this potential that incorporates the effects of
Brown-Rho scaling medium modifications, we find that the GT matrix element
vanishes for a nuclear density around 85% that of nuclear matter. We find that
the splitting between the (J,T)=(1+,0) and (J,T)=(0+,1) states in 14N is
improved using the medium-modified Bonn-B potential and that the transition
strengths from excited states of 14C to the 14N ground state are compatible
with recent experiments.Comment: 4 pages, 5 figures Updated to include referee comments/suggestion
Saturation with chiral interactions and consequences for finite nuclei
We explore the impact of nuclear matter saturation on the properties and
systematics of finite nuclei across the nuclear chart. Using the ab initio
in-medium similarity renormalization group (IM-SRG), we study ground-state
energies and charge radii of closed-shell nuclei from He to Ni,
based on a set of low-resolution two- and three-nucleon interactions that
predict realistic saturation properties. We first investigate in detail the
convergence properties of these Hamiltonians with respect to model-space
truncations for both two- and three-body interactions. We find one particular
interaction that reproduces well the ground-state energies of all closed-shell
nuclei studied. As expected from their saturation points relative to this
interaction, the other Hamiltonians underbind nuclei, but lead to a remarkably
similar systematics of ground-state energies. Extending our calculations to
complete isotopic chains in the and shells with the valence-space
IM-SRG, the same interaction reproduces not only experimental ground states but
two-neutron-separation energies and first excited states. We also
calculate radii with the valence-space IM-SRG for the first time. Since this
particular interaction saturates at too high density, charge radii are still
too small compared with experiment. Except for this underprediction, the radii
systematics is, however, well reproduced. Our results highlight the importance
of nuclear matter as a theoretical benchmark for the development of
next-generation chiral interactions.Comment: 11 pages, 15 figures, 1 tabl
The optical morphologies of the 2Jy sample of radio galaxies: evidence for galaxy interactions
We present deep GMOS-S/Gemini optical broad-band images for a complete sample of 46 southern 2Jy radio galaxies at intermediate redshifts (0.05<z<0.7). Based on them, we discuss the role of galaxy interactions in the triggering of powerful radio galaxies (PRGs). The high-quality observations presented here show for the first time that the overall majority of PRGs at intermediate redshifts (78-85%) show peculiarities in their optical morphologies at relatively high levels of surface brightness(ĖĪ¼V = 23.6 mag arcsecā2; Ī¼V ā [21, 26] mag arcsecā2). The observed morphological peculiarities include tails, fans, bridges, shells, dust lanes, irregular features, amorphous haloes, and multiple nuclei. While the results for many of the galaxies are consistent with them being observed at, or after, the time of coalescence of the nuclei in a galaxy merger, we find that more than one-third of the sample are observed in a pre-coalescence phase of the merger, or following a close encounter between galaxies that will not necessarily lead to a merger. By dividing the sample into Weak-Line Radio Galaxies (WLRGs; 11 objects) and Strong-Line Radio Galaxies (SLRGs; 35 objects) we find that only 27% of the former show clear evidence for interactions in
their optical morphologies, in contrast to the SLRGs, of which at least 94% appear interacting. This is consistent with the idea that many WLRGs are fuelled/triggered
by Bondi accretion of hot gas. However, the evidence for interactions and dust features in a fraction of them indicates that the accretion of cold gas cannot always be ruled out. Of the 28% of the sample that display evidence for significant starburst activity, we find that 92% present disturbed morphologies, following the same general trend as the total and SLRG samples. By comparing our PRGs with various samples of quiescent ellipticals from the literature, we conclude that the percentage of morphological
disturbance that we find here exceeds that found for quiescent ellipticals when similar surface brightnesses are considered. Overall, our study indicates that galaxy
interactions are likely to play a key role in the triggering of AGN/jet activity
- ā¦