119 research outputs found
Efficacy and Safety of the Human Glucagon-Like Peptide-1 Analog Liraglutide in Combination With Metformin and Thiazolidinedione in Patients With Type 2 Diabetes (LEAD-4 Met+TZD)
OBJECTIVETo determine the efficacy and safety of liraglutide (a glucagon-like peptide-1 receptor agonist) when added to metformin and rosiglitazone in type 2 diabetes.RESEARCH DESIGN AND METHODSThis 26-week, double-blind, placebo-controlled, parallel-group trial randomized 533 subjects (1:1:1) to once-daily liraglutide (1.2 or 1.8 mg) or liraglutide placebo in combination with metformin (1 g twice daily) and rosiglitazone (4 mg twice daily). Subjects had type 2 diabetes, A1C 7–11% (previous oral antidiabetes drug [OAD] monotherapy ≥3 months) or 7–10% (previous OAD combination therapy ≥3 months), and BMI ≤45 kg/m2.RESULTSMean A1C values decreased significantly more in the liraglutide groups versus placebo (mean ± SE −1.5 ± 0.1% for both 1.2 and 1.8 mg liraglutide and −0.5 ± 0.1% for placebo). Fasting plasma glucose decreased by 40, 44, and 8 mg/dl for 1.2 and 1.8 mg and placebo, respectively, and 90-min postprandial glucose decreased by 47, 49, and 14 mg/dl, respectively (P < 0.001 for all liraglutide groups vs. placebo). Dose-dependent weight loss occurred with 1.2 and 1.8 mg liraglutide (1.0 ± 0.3 and 2.0 ± 0.3 kg, respectively) (P < 0.0001) compared with weight gain with placebo (0.6 ± 0.3 kg). Systolic blood pressure decreased by 6.7, 5.6, and 1.1 mmHg with 1.2 and 1.8 mg liraglutide and placebo, respectively. Significant increases in C-peptide and homeostasis model assessment of β-cell function and significant decreases in the proinsulin-to-insulin ratio occurred with liraglutide versus placebo. Minor hypoglycemia occurred more frequently with liraglutide, but there was no major hypoglycemia. Gastrointestinal adverse events were more common with liraglutide, but most occurred early and were transient.CONCLUSIONSLiraglutide combined with metformin and a thiazolidinedione is a well-tolerated combination therapy for type 2 diabetes, providing significant improvements in glycemic control
No difference in striatal dopamine transporter availability between active smokers, ex-smokers and non-smokers using [123I]FP-CIT (DaTSCAN) and SPECT
Background: Mesolimbic and nigrostriatal dopaminergic pathways play important roles in both the rewarding and conditioning effects of drugs. The dopamine transporter (DAT) is of central importance in regulating dopaminergic neurotransmission and in particular in activating the striatal D2-like receptors. Molecular imaging studies of the relationship between DAT availability/dopamine synthesis capacity and active cigarette smoking have shown conflicting results. Through the collaboration between 13 SPECT centres located in 10 different European countries, a database of FP-CIT-binding in healthy controls was established. We used the database to test the hypothesis that striatal DAT availability is changed in active smokers compared to non-smokers and ex-smokers. Methods: A total of 129 healthy volunteers were included. Subjects were divided into three categories according to past and present tobacco smoking: (1) non-smokers (n = 64), (2) ex-smokers (n = 39) and (3) active smokers (n = 26). For imaging of the DAT availability, we used [123I]FP-CIT (DaTSCAN) and single photon emission computed tomography (SPECT). Data were collected in collaboration between 13 SPECT centres located in 10 different European countries. The striatal measure of DAT availability was analyzed in a multiple regression model with age, SPECT centre and smoking as predictor. Results: There was no statistically significant difference in DAT availability between the groups of active smokers, ex-smokers and non-smokers (p = 0.34). Further, we could not demonstrate a significant association between striatal DAT and the number of cigarettes per day or total lifetime cigarette packages in smokers and ex-smokers. Conclusion: Our results do not support the hypothesis that large differences in striatal DAT availability are present in smokers compared to ex-smokers and healthy volunteers with no history of smoking
The influence of the moisture content of microcrystalline cellulose on the coating process in a fluidized bed
Overweight and obesity is a health threat of increasing concern and understanding the neurobiology behind obesity is instrumental to the development of effective treatment regimes. Serotonergic neurotransmission is critically involved in eating behaviour; cerebral level of serotonin (5-HT) in animal models is inversely related to food intake and body weight and some effective anti-obesity agents involve blockade of the serotonin transporter (SERT). We investigated in 60 healthy volunteers body mass index (BMI) and regional cerebral SERT binding as measured with [(11)C]DASB PET. In a linear regression model with adjustment for relevant covariates, we found that cortical and subcortical SERT binding was negatively correlated to BMI (-0.003 to -0.012 BP(ND) unit per kg/m(2)). Tobacco smoking and alcohol consumption did not affect cerebral SERT binding. Several effective anti-obesity drugs encompass blockade of the SERT; yet, our study is the first to demonstrate an abnormally decreased cerebral SERT binding in obese individuals. Whether the SERT has a direct role in the regulation of appetite and eating behaviour or whether the finding is due to a compensatory downregulation of SERT secondary to other dysfunction(s) in the serotonergic transmitter system, such as low baseline serotonin levels, remains to be established
Induction of G1 and G2/M cell cycle arrests by the dietary compound 3,3'-diindolylmethane in HT-29 human colon cancer cells
<p>Abstract</p> <p>Background</p> <p>3,3'-Diindolylmethane (DIM), an indole derivative produced in the stomach after the consumption of broccoli and other cruciferous vegetables, has been demonstrated to exert anti-cancer effects in both <it>in vivo </it>and <it>in vitro </it>models. We have previously determined that DIM (0 – 30 μmol/L) inhibited the growth of HT-29 human colon cancer cells in a concentration-dependent fashion. In this study, we evaluated the effects of DIM on cell cycle progression in HT-29 cells.</p> <p>Methods</p> <p>HT-29 cells were cultured with various concentrations of DIM (0 – 30 μmol/L) and the DNA was stained with propidium iodide, followed by flow cytometric analysis. [<sup>3</sup>H]Thymidine incorporation assays, Western blot analyses, immunoprecipitation and <it>in vitro </it>kinase assays for cyclin-dependent kinase (CDK) and cell division cycle (CDC)2 were conducted.</p> <p>Results</p> <p>The percentages of cells in the G1 and G2/M phases were dose-dependently increased and the percentages of cells in S phase were reduced within 12 h in DIM-treated cells. DIM also reduced DNA synthesis in a dose-dependent fashion. DIM markedly reduced CDK2 activity and the levels of phosphorylated retinoblastoma proteins (Rb) and E2F-1, and also increased the levels of hypophosphorylated Rb. DIM reduced the protein levels of cyclin A, D1, and CDK4. DIM also increased the protein levels of CDK inhibitors, p21<sup>CIP1/WAF1 </sup>and p27<sup>KIPI</sup>. In addition, DIM reduced the activity of CDC2 and the levels of CDC25C phosphatase and cyclin B1.</p> <p>Conclusion</p> <p>Here, we have demonstrated that DIM induces G1 and G2/M phase cell cycle arrest in HT-29 cells, and this effect may be mediated by reduced CDK activity.</p
A Novel Role for DNA-PK in Metabolism by Regulating Glycolysis in Castration Resistant Prostate Cancer
Published first January 24, 2022.Purpose: DNA-dependent protein kinase catalytic subunit (DNA-PKcs, herein referred as DNA-PK) is a multifunctional kinase of high cancer relevance. DNA-PK is deregulated in multiple tumor types, including prostate cancer, and is associated with poor outcomes. DNA-PK was previously nominated as a therapeutic target and DNA-PK inhibitors are currently undergoing clinical investigation. Although DNA-PK is well studied in DNA repair and transcriptional regulation, much remains to be understood about the way by which DNA-PK drives aggressive disease phenotypes. Experimental Design: Here, unbiased proteomic and metabolomic approaches in clinically relevant tumor models uncovered a novel role of DNA-PK in metabolic regulation of cancer progression. DNA-PK regulation of metabolism was interrogated using pharmacologic and genetic perturbation using in vitro cell models, in vivo xenografts, and ex vivo in patient-derived explants (PDE). Results: Key findings reveal: (i) the first-in-field DNA-PK protein interactome; (ii) numerous DNA-PK novel partners involved in glycolysis; (iii) DNA-PK interacts with, phosphorylates (in vitro), and increases the enzymatic activity of glycolytic enzymes ALDOA and PKM2; (iv) DNA-PK drives synthesis of glucosederived pyruvate and lactate; (v) DNA-PK regulates glycolysis in vitro, in vivo, and ex vivo; and (vi) combination of DNA-PK inhibitor with glycolytic inhibitor 2-deoxyglucose leads to additive anti-proliferative effects in aggressive disease. Conclusions: Findings herein unveil novel DNA-PK partners, substrates, and function in prostate cancer. DNA-PK impacts glycolysis through direct interaction with glycolytic enzymes and modulation of enzymatic activity. These events support energy production that may contribute to generation and/or maintenance of DNA-PK–mediated aggressive disease phenotypes.Emanuela Dylgjeri, Vishal Kothari, Ayesha A. Shafi, Galina Semenova, Peter T. Gallagher, Yi F. Guan, Angel Pang, Jonathan F. Goodwin, Swati Irani, Jennifer J. McCann, Amy C. Mandigo, Saswati Chand, Christopher M. McNair, Irina Vasilevskaya, MatthewJ. Schiewer, Costas D. Lallas, Peter A. McCue, Leonard G. Gomella, Erin L. Seifert, Jason S. Carroll, Lisa M. Butler, Jeff Holst, William K. Kelly, and Karen E. Knudse
In Vitro Pharmacological Characterization of RXFP3 Allosterism: An Example of Probe Dependency
Recent findings suggest that the relaxin-3 neural network may represent a new ascending arousal pathway able to modulate a range of neural circuits including those affecting circadian rhythm and sleep/wake states, spatial and emotional memory, motivation and reward, the response to stress, and feeding and metabolism. Therefore, the relaxin-3 receptor (RXFP3) is a potential therapeutic target for the treatment of various CNS diseases. Here we describe a novel selective RXFP3 receptor positive allosteric modulator (PAM), 3-[3,5-Bis(trifluoromethyl)phenyl]-1-(3,4-dichlorobenzyl)-1-[2-(5-methoxy-1H-indol-3-yl)ethyl]urea (135PAM1). Calcium mobilization and cAMP accumulation assays in cell lines expressing the cloned human RXFP3 receptor show the compound does not directly activate RXFP3 receptor but increases functional responses to amidated relaxin-3 or R3/I5, a chimera of the INSL5 A chain and the Relaxin-3 B chain. 135PAM1 increases calcium mobilization in the presence of relaxin-3NH2 and R3/I5NH2 with pEC50 values of 6.54 (6.46 to 6.64) and 6.07 (5.94 to 6.20), respectively. In the cAMP accumulation assay, 135PAM1 inhibits the CRE response to forskolin with a pIC50 of 6.12 (5.98 to 6.27) in the presence of a probe (10 nM) concentration of relaxin-3NH2. 135PAM1 does not compete for binding with the orthosteric radioligand, [125I] R3I5 (amide), in membranes prepared from cells expressing the cloned human RXFP3 receptor. 135PAM1 is selective for RXFP3 over RXFP4, which also responds to relaxin-3. However, when using the free acid (native) form of relaxin-3 or R3/I5, 135PAM1 doesn't activate RXFP3 indicating that the compound's effect is probe dependent. Thus one can exchange the entire A-chain of the probe peptide while retaining PAM activity, but the state of the probe's c-terminus is crucial to allosteric activity of the PAM. These data demonstrate the existence of an allosteric site for modulation of this GPCR as well as the subtlety of changes in probe molecules that can affect allosteric modulation of RXFP3
Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU
Contains fulltext :
172380.pdf (publisher's version ) (Open Access
- …