10 research outputs found
Cooling intact and demembranated trabeculae from rat heart releases myosin motors from their inhibited conformation
Myosin filament–based regulation supplements actin filament–based regulation to control the strength and speed of contraction in heart muscle. In diastole, myosin motors form a folded helical array that inhibits actin interaction; during contraction, they are released from that array. A similar structural transition has been observed in mammalian skeletal muscle, in which cooling below physiological temperature has been shown to reproduce some of the structural features of the activation of myosin filaments during active contraction. Here, we used small-angle x-ray diffraction to characterize the structural changes in the myosin filaments associated with cooling of resting and relaxed trabeculae from the right ventricle of rat hearts from 39°C to 7°C. In intact quiescent trabeculae, cooling disrupted the folded helical conformation of the myosin motors and induced extension of the filament backbone, as observed in the transition from diastole to peak systolic force at 27°C. Demembranation of trabeculae in relaxing conditions induced expansion of the filament lattice, but the structure of the myosin filaments was mostly preserved at 39°C. Cooling of relaxed demembranated trabeculae induced changes in motor conformation and filament structure similar to those observed in intact quiescent trabeculae. Osmotic compression of the filament lattice to restore its spacing to that of intact trabeculae at 39°C stabilized the helical folded state against disruption by cooling. The myosin filament structure and motor conformation of intact trabeculae at 39°C were largely preserved in demembranated trabeculae at 27°C or above in the presence of Dextran, allowing the physiological mechanisms of myosin filament–based regulation to be studied in those conditions
The right ventricle of Tetralogy of Fallot patients undergoing pulmonary valve replacement has normal myofilament function but shows perturbations to the expression of extracellular matrix genes
BACKGROUND: Patients with repair of tetralogy of Fallot (rToF) who are approaching adulthood often exhibit pulmonary valve regurgitation, leading to right ventricle (RV) dilatation and dysfunction. The regurgitation can be corrected by pulmonary valve replacement (PVR), but the optimal surgical timing remains under debate, mainly because of the poorly understood nature of RV remodeling in patients with rToF. The goal of this study was to probe for pathologic molecular, cellular, and tissue changes in the myocardium of patients with rToF at the time of PVR.
METHODS AND RESULTS: We measured contractile function of permeabilized myocytes, collagen content of tissue samples, and the expression of mRNA and selected proteins in RV tissue samples from patients with rToF undergoing PVR for severe pulmonary valve regurgitation. The data were compared with nondiseased RV tissue from unused donor hearts. Contractile performance and passive stiffness of the myofilaments in permeabilized myocytes were similar in rToF‐PVR and RV donor samples, as was collagen content and cross‐linking. The patients with rToF undergoing PVR had enhanced mRNA expression of genes associated with connective tissue diseases and tissue remodeling, including the small leucine‐rich proteoglycans ASPN (asporin), LUM (lumican), and OGN (osteoglycin), although their protein levels were not significantly increased.
CONCLUSIONS:
RV myofilaments from patients with rToF undergoing PVR showed no functional impairment, but the changes in extracellular matrix gene expression may indicate the early stages of remodeling. Our study found no evidence of major damage at the cellular and tissue levels in the RV of patients with rToF who underwent PVR according to current clinical criteria