69 research outputs found

    Lower Bounds for Pinning Lines by Balls

    Get PDF
    A line L is a transversal to a family F of convex objects in R^d if it intersects every member of F. In this paper we show that for every integer d>2 there exists a family of 2d-1 pairwise disjoint unit balls in R^d with the property that every subfamily of size 2d-2 admits a transversal, yet any line misses at least one member of the family. This answers a question of Danzer from 1957

    Geometric Transversals for Families of disjoint Translates in the Plane

    Get PDF

    Topology of geometric joins

    Get PDF
    We consider the geometric join of a family of subsets of the Euclidean space. This is a construction frequently used in the (colorful) Carath\'eodory and Tverberg theorems, and their relatives. We conjecture that when the family has at least d+1d+1 sets, where dd is the dimension of the space, then the geometric join is contractible. We are able to prove this when dd equals 22 and 33, while for larger dd we show that the geometric join is contractible provided the number of sets is quadratic in dd. We also consider a matroid generalization of geometric joins and provide similar bounds in this case
    corecore