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GEOMETRIC TRANSVERSALS FOR FAMILIES OF DISJOINT
TRANSLATES IN THE PLANE

ANDREAS HOLMSEN

ABSTRACT. A family of convex sets in the plane admits a common transversal if there exists a
line that meets every member of the family.

In 1980 M. Katchalski and T. Lewis proved the following for families of (pairwise) disjoint
translates of a compact convex set in the plane: There exists a positive integer k such that if F'
is a family satisfying the condition that any three of its members admit a common transversal,
then some subfamily G C F admits a common transversal and |F \ G| < k. They prove that
k < 603, and conjecture that k = 2 is a universal constant for families of disjoint translates.

In this paper we shall improve Katchalski and Lewis’ upper bound on k, and construct
counterexamples to their conjecture. We also prove some results on geometric permutations,
and in particular that any family consisting of more than three disjoint unit discs in the plane
admits at most two geometric permutations, and with this improving a result by Smorodinsky
etvals

1. INTRODUCTION

Geometric transversal theory originates from Helly’s theorem, when Vincensini in 1935 ob-
served that a common point for a family of convex sets in R", is a special case, k = 0, of a
k-transversal for the family; i.e. a k-flat that meets every member of the family. It is there-
fore natural to ask whether there exist “Helly-type” results when k& > 0. There are several
surveys concerning geometric transversal theory, by among others, Danzer-Griinbaum-Klee [3],
Goodman-Pollack-Wenger [7], Eckhoff [6], and most recently, Wenger [18].

For the main part of this paper we shall focus our attention on families in the plane, and the
case of 1-transversals (or just transversals). If a family F' admits a common transversal we say
that F' has the property T, and if every m-membered subset of F admits a common transversal,
we say that F' has the property T'(m). Examples (e.g. see [9]) show that there does not exist a
Helly-type result for families of convex sets, in general. That is, there does not exist any positive
integer m, such that T'(m) = T, for general families of convex sets. To obtain such results one
must therefore limit oneself to special families of convex sets.

Such a result was found already in 1940, by Santal6, who proved that for families of parallel
rectangles, T'(6) = T'. This result cannot be extended, in the sense that the number 6 cannot be
replaced by the number 5. Another example of a special family, for which there is a Helly-type
theorem, is when F is a family of disjoint translates of a compact convex set. In 1989 Tverberg
[16] proved a long-standing conjecture of Griinbaum, that T'(5) = 7.

A family of convex sets in the plane is said to have the property T — &, if there is a transversal
for all but at most & of the members of the family. In 1980 Katchalski and Lewis [12] asked the
following question: What happens if the number 5 is replaced by the number 3 in Griinbaum’s
conjecture? They proved that one will always be able to find a large subfamily that admits a
common transversal. That is, T(3) = T — k, for some positive integer k, when the family in
question consists of disjoint translates of a compact convex set. They proved that £ < 603, but
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conjectured that k = 2 is a universal constant for all such families. Examples (e.g. see [2]) show
that k cannot be less than 2. In 1982, Katchalski and Lewis [11] proved T'(4) = T — 2 for families
of translates of a parallelogram. In [17] Tverberg studies the Katchalski-Lewis conjecture and
the possibilities of using the methods from [16] to approach a solution of this problem.

Our paper will focus on families of disjoint translates, with special attention on the situation
T(3), thus continuing the work done in [12] and [17].

2. PRELIMINARIES

We now prove some standard reductions done by Tverberg [16]. In particular we will show for
families of translates, that transversal properties are in many cases preserved under symmetriza-
tion.

Let K C R™ be a compact convex set. From K we can always construct a centrally symmetric
set K’ ¢ R™ by the Minkowski addition formula

The center of symmetry then lies in the origin.

Let F be a family of translates of K. F can be expressed as {K +v;,i € I}, where the v; are
translation vectors in R™. If we substitute K for K, such that we get F' = {K' + v;,7 € I},
we will say that we symmetrize F. We shall now see which properties are preserved by the
symmetrization.

Proposition 2.1. The family F is disjoint if and only F' is disjoint.

Proof. Let K + v; and K + vy be two translates in R". K + v; and K + vy have a point in
common if and only if there are points z1,z9 € K such that z; +v1 = 22 + v2. But the last
statement can be rewritten as %(:1:1 — I9) + v = %(12 — x1) + vy, stating that the symmetrized
translates K’ + v; and K' + v, have a common point. [

We say that F has (or admits) a k-transversal if there is a k-flat that meets every member of
F. We then have the following.

Proposition 2.2. F admits an (n—1)-transversal if and only if ' admats an (n—1)-transversal.

Proof. Let H be an (n — 1)-transversal for F = {K +v;,i € I'}. Let H; and H» be hyperplanes
that are parallel to H, and that are upper and lower supporting Liyperplanes of K, respectively.
Choose points y; € H; N K and y € Hy N K. We may assume that the origin is placed such
that y; = —ys. Since H is an (n — 1)-transversal for F', we have in particular for each translate
K + v, in F, that the point ; = A\jy1 + (1 — A;)y2 + v; is in H, for some A; € [0,1]. Since

1
(i — 5(’!/1 —y2) € K’
1 !
Y = 5(’!/2 e
it

we have z; = \jy1 + ( — N)y2 +v; € K+ v;, (Vi € I)

Thus, H is an (n — 1)-transversal for F.
Conversely, assume that F' has an (n — 1)-transversal H', and let Hj and H!, be hyperplanes
that are parallel to H', and that are upper and lower supporting hyperplanes of K'. respectively.
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As before, choose points y; € H{NK' and y» € HyNK'. By central symmetry, these points may

be chosen such that y; = —yy. For points ¢ and b in K we have
I
y=zla=b)
1
Yo =—(b—a
e
and we may further assume that the origin is placed such that « = —b. This gives us y; = a and

Y2 = b. Since H' is an (n — 1)-transversal for F’, we have in particular for each translate K’ + v;
in F', that the point z; = \a + (1 — A;)b + v; is in H', for some \; € [0,1]. This gives us

Ti =MNa+ (1= XN)b+v; € K+ v, (Vi € )
Thus H' is an (n — 1)-transversal for F. O
Note. The above argument also shows that a family of translates and the corresponding
symmetrized family F’, admit (n — 1)-transversals in the exact same directions.

Let F' be a family of disjoint translates. A l-transversal of F' will meet the translates in a
certain order, inducing two permutations of F', one being the reverse of the other. We call the
resulting pair of permutations a geometric permutation (GP). In R? we have the following.

Proposition 2.3. The transversals of F and F' induce the same GPs.

Proof. This follows immediately from the proof of proposition 2.2 by observing that the points
z; € (K + v;), determine the GP. But since z; € (K’ + v;), F’ admits the same GP. O

If there exists a hyperplane H of R™ such that any hyperplane parallel to H meets at most
one member of F, we say that F is totally separable. We then have the following.

Proposition 2.4. F is totally separable if and only if F' is totally separable.

Proof. A family F' being totally separable is equivalent to the situation in which there exists
a hyperplane H such that no two members of F' admit an (n — 1)-transversal parallel to H.
The result follows from the fact that F' and F’ admit (n — 1)-transversals in the exact same
directions. . d

We have seen that transversal properties are preserved under symmetrization when the codi-
mension of the transversal is 1. When the codimension is different from 1, transversal properties
are not necessarily preserved. We give here an example of this.

Let K be an equilateral triangle in R? given by the vertices v; = (—1,0), vy = (1,0), vy =
RVE]

(0,4/3). Then K’ is a regular hexagon given by the vertices w; = (1,0), wy = l5aia ) awsnss
(—%, ?)7 w; = —w;—3 (1 = 4,5,6). We now construct a family F of translates of K that has a

0-transversal, but such that F' does not have a O-transversal. By Helly’s theorem in the plane,
we need only consider families consisting of three translates.

Let F be given as {K + ¢;, (¢ = 1,2,3)}, where ¢; = (—1,0), ¢z = (1,0), and ¢3 = (0, —v/3).
The origin is contained in each of the three translates, and the family therefore has a O-transversal.
When we replace K with K', however, we get (K'+c¢1)N (K +cz) = (0,0), (K'+¢))N(K' +c¢3) =
(-1, —+/3), and (K' + ¢2) N (K' + ¢c3) = (3,—V/3). Thus F’ does not have a 0O-transversal. The
situation is illustrated in the figure below.
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3. INCOMPATIBLE GEOMETRIC PERMUTATIONS

Geometric permutations have been a useful tool in the study of geometric transversal the-
ory. An example of this is Tverberg’s use of certain incompatible pairs of G'Ps for translates
in the plane, in his proof of Griinbaum’s conjecture [16]. In [17] Tverberg studies families of
disjoint translates, that have transversals which induce three distinct GPs. He proves that the
permutations must have the following form

(WiT\Ws) (W ThWy) (Wi T3Ws)
where W, and Wy are finite “words”, and the triple {T1, 7>, T3} has one of the following forms
1 IXABC, XBCOA WG
2w XARCH . X B Al Xoisd @
31 HABXC VAXC B G AN
45 N ABCXT B X ACHE ACHK B

He also mentions that some of these triples can be excluded. We prove here that only the triples
2 and 4 can exist.

Proposition 3.1. Let A, B, C, and X be disjoint compact convex sets in the plane. The triple
{(XABC), (XBCA), (XCAB)} of geometric permutations is incompatible.

Proof. Let I, m, and n be lines that induce the three GPs. Since parallel lines induce the same
GP, I, m, and n are non-parallel. By moving the three sets a little closer to each other (or
enlarging them a bit) we can ensure enough room to move the lines [, m, and n such that they
do not all meet in the same point.

We now wish to distinguish the different ways [, m, and n can induce the three GPs (BAC),
(ABC), and (ACB). We can assume that [ is horizontal, m is ascending, and n is descending
such that when we traverse [ from left to right, we first meet m, and then meet n. Assume for
example that m induces the GP (BAC). We then have to consider two cases, because moving
downward along m, we could meet the sets in the order ..B..A..C.. or ..C..A..B.. The situation
is similar for the other lines. When we travel downward along m, from left to right along [, and
upward along n, we meet the sets A, B, C in different orders, such that we induce the three
different GPs. We call this a combination of orders. Two combinations of orders are equivalent
if one is obtainable from the other by permuting the names of the sets and lines. or/and by an
appropriate congruence of the plane. It turns out that there are four different combinations of
orders. This can be seen as follows. Which GPs the different lines [, m, n induce is irrelevant,
since we allow permuting the names of the sets. The essential thing is that the “middle™sets on
each line are distinct. Thus we can represent each combination of orders in the following way:
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Assume the lines are given as before, and when we traverse downward along m we meet the sets
in the order ..x;..z..z5.., when we traverse from left to right along [ we meet the sets ..y;..y..ys..,
and when we traverse upward along n we meet ..z;..z..z9.. This can be represented as the labeled
graph on 6 vertices, by the edges z9y1, y221, and zox;. Returning to our situation, we have that
z, y and z are distinct. Further, for each of the three lines, the “outer”-sets on that line must
be the same as the “middle™sets on the two other lines. Thus. each combination of orders can
be represented as a labeled graph on three vertices that is regular of degree 2. Let R be a given
combination of orders, and let G be the corresponding labeled graph. Let 7 be a permutation of
{A,B,C}. Then mR is an equivalent combination of orders, and the corresponding labeled graph
will be 7G. A congruence of the plane will not change the representing labeled graph. Thus
every combination of orders corresponds to one of the three graphs on three vertices that are
regular of degree 2. It turns out that one of these graphs represents two different combination
of orders, while the two others are unique.

Below we have listed the different combinations of orders for the sets, when we traverse down-
ward along m, from left to right along [, and upward along n:

16 2FE RO AT BAS R AR B @RS R e (AR ]

2t (G A B A B G S AR G SR
S R @ T S @R e W S AT
4 e BIRARE L @ B DA A @ B

We shall now consider a special case with only two sets, prove that this cannot occur, and
then we will observe that each of the cases listed above will include the special case. Let Y and
Z be two disjoint compact, convex sets. Let [, m, and n be lines situated as explained above.
Assume that when we traverse downward along m, from left to right along [, and upward along
n, we meet the sets in the order:

() i YA A G N

- We now divide the lines as follows: Let [y be the segment of [ with endpoints [ N m, and [ N n.
Let [; be the part of [ that lies to the left of /5, and let I3 be the part of [ that lies to the right
of ly. Similarly, let mo be the segment of m with endpoints m N1 and m Nn, let m; be the part
of m that lies above ms, and let ms be the part of m that lies below msy. Finally, let no be the
segment between n N[ and n N m, let n; be the part of n below ny, and let n3 be the part of n
above ns. ‘

For each of the sets Y and Z, and each of the lines [, m, and n, we choose a point from the
intersection of the set and the line. We denote the point from the intersection of the set X and
the line ¢, as X,. By enlarging the sets a bit (while still preserving the disjointness), we may
assume that none of these points coincide with the points I Nm, [ N7, and m N n.

Assume Y,, and Z,, lie on my Ums, and Y, and Z; lie on [, Ul3. Then Y and Z cannot be
disjoint since the segment between Y; and Y;, will cross the segment between Z; and Z,,. The
situation is equivalent for the line pairs {l,n} and {m,n}. Thus, by symmetry. we need only
consider the case where Y] lies on [y, and Y, lies on n;. Then the segment between Y; and Y,
must cross ms, and Z,, must lie on ms below this crossing point. But Z; must lie to the right of
Y, on [, thus we must have one of the following cases: Either the segment between Z,, and Z; and
the segment between Y; and Y, cross each other, or they do not cross each other. For the latter
case to occur, the segment between Z,, and Z; must cross n below the point Y,,. contradicting
the fact that we meet the sets in the order ..Y..Z.. when we traverse upward along n. Thus we
have shown that the situation (x) cannot occur.
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We now return to the four combinations of orders. Case 2, above, includes (x) when A =Y
and B = Z. By letting C =Y and B = Z in case 3, we also have (x). To exclude cases 1 and
4, we must include the set X. X is included so that the combination of orders coincide with the
G Ps. We then have the following cases (with the same notation):

LIl I e S R ) e o S IO o D

LA Tl S R0 GV O T o0 T RN e B 5 D €
By letting X =Y and A = Z in case 1, and letting A =Y and X = Z in case 4’ both the cases
include (x). This completes the proof. O

We now exclude the third triple of geometric permutations.

Proposition 3.2. Let A, B, C and Z be disjoint translates in the plane. The following triple
of geometric permutations is incompatible: {(ABZC), (AZCB), (CAZB)}.

Proof. By proposition 2.3, we may assume the translates to be centrally symmetric. Let [, m,
and 7 be three lines that induce the different GPs. Further, the translates may be assumed to
be centrally symmetric hexagons. To see this, let I; and [ be the upper and lower support lines
of A that are parallel to [, respectively. By the central symmetry, there is a central chord of A
that meets {3 and ly. This chord also meets [, and in each of the other translates the parallel
central chord will also meet {. The GP that [ induces on the chords is then the same as the one
! induces on the translates. Doing the same for the lines m and n, we have for each translate,
three central chords, where [, m, and n induce the same GP on each set of parallel chords, as on
the given translates. Thus, we may cut down each translate to the centrally symmetric hexagon
spanned by the three central chords. Therefore we may assume A, B, C, and Z to be translates
of a centrally symmetric hexagon.

Now, label the edges of the hexagon, counterclockwise, from 1 to 6, and denote the edge j of
the translate Y, as Y;. Let X; and Y; be edges of X and Y, respectively. If the line that contains
the edge X; and the line that contains Y}, are distinct and both separate X and Y, we say that
X, and Y; are opposing edges. We denote this as {X;,Y;}. Note that if we have {X;,Y;}, then
i — 4| = 3.

Before continuing, we shall make an observation concerning convex sets in the plane, in general.
Let [; and l» be parallel lines in the plane, and let X, Y, and W be three disjoint convex sets in
the plane. Assume that [; and [y each separate (properly) a distinct pair of the three sets. Then
X.Y.W can have at most two ‘distinct GPs. To see this, assume (for the sake of the argument)
that [; and Iy are horizontal, and that [; lies above l5. Since I} separates a pair of the sets, one
of the sets, say X, must lie in the upper open half-plane defined by /;. Similarly, one of the sets,
say Y, must lie in the lower open half-plane defined by l. Now /1 and Iy both separate the pair
X.Y . so one of the two lines must separate another pair of the three sets. For this to occur, W
must lie in the lower open half-plane defined by /1 or in the upper open half-plane defined by
l,. In both cases we end up with a line separating one of the sets from the two other sets, and
particularly separating one of the sets from the convex hull of the two other sets, excluding the
existence of one of the three possible GPs. Therefore X, Y, and W can have at most two GPs.

If we consider the three hexagons A, B, and C, clearly each pair of hexagons must have at
least one pair of opposing edges, by disjointness. Assume some pair of hexagons, say A and I
has more than one pair of opposing edges. Then for some edge A;, there is a line ;, parallel
to A;, that separates A and B. And for some other edge A;, there is a line [;, parallel to A;,
that also separates A and B. Clearly [; and [; cannot be parallel. Further, A and C must have
a pair of opposing edges, so let [, be a line, parallel to the edge A,,, that separates A and C.
Similarly, let I, be a line, parallel to the edge B,,, that separates B and C. Since the translates
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are centrally symmetric hexagons, the lines l;, {;, I, and /,, are determined by only three distinct
directions. This implies that there are two parallel lines that each separate a distinct pair of the
three translates. But then the sets A, B, and C cannot have three distinct GPs. The conclusion
is therefore that each pair of the three translates has exactly one pair of opposing edges. It
also follows that the centers of the translates are not collinear. We may therefore assume that
the centers have the cyclic order ..A..B..C.., moving counterclockwise. All in all we have the
following: {A;, B;_3},{Bi—4,Ci—1},{Ci—2, Ait1}, for some i € Z;. As remarked earlier, these
are the only edges among A, B, and C that are opposing. For the rest of the argument we let
=

Consider how Z is positioned relative to B. We must have {Z,, B4}, and no other opposing
edges between Z and B. To see this, we consider all the other possibilities. If {Z5, Bs}, there
must be a line, parallel to Bs, that separates B from A and from Z, making it impossible to
have the GP (ABZ). If {Z3, Bg}, there must be a line, parallel to By that separates Z from B
and from C, and it follows that we cannot have the GP (BZC). If {Z4, By}, a line, parallel to
B, will separate Z from B and from C', and again we cannot have the GP (BZC). If {Zs, By},
a line, parallel to By, will separate Z from A and from B, thus making it impossible to have the
GP (AZB). Finally, consider {Zg, B3}. Since we cannot have {C, By}, there is a line, parallel
to Bs, that separates Z from A and from B, and again we cannot have the GP (AZB). Thus,
the only opposing edges between B and Z, is the pair {Z}, B4}. Similarly, we have that the only
opposing edges between A and Z, is the pair {A, Z5}, and the only opposing edges between C
and Z, is the pair {Cg, Z3}.

Let /1 be the line through the center of A that is parallel to A;. Assume /; is horizontal and A4,
lies in the lower half-plane defined by ;. Then /; must intersect the interior of the edge As. For
if not, [, must intersect the edge As, and a contradiction is obtained as follows. If I; intersects
A3z, the center of Z must lie in the lower closed half-plane defined by I;. If this was not the case,
it would be impossible to have {4y, Z5} without also having { A3, Z;}. But when the center of Z
lies in this lower half-plane, the line that contains the edge A; must intersect Z. And since we
also have {Z;, By}, it follows that the line parallel to Z; that separates Z and B, also separates
A and B, implying {41, B4}. Thus, the line /; must intersect the interior of the edge A,.

Observing the cyclic symmetry of the sets A, B, and C in the triple of GPs, we find, in general,
that the line /; through the center of one of the hexagons, which is parallel to the edge 4 of the
hexagon, must intersect the interior of the edge ¢ + 1 (numbers are read mod 3). This, however,
1s impossible for a centrally symmetric hexagon. The contradiction completes the proof. (I

We summarize with the following:

Theorem 3.3. There are exactly two types of compatible triples of GPs for convex translates in
the plane. They are {(W1ABCW,), (W1 BC AW>), (W1 BACW,)}
and

{(WLABCXW,), (W,CAXBW>), (W1 ACX BW))}

An example of a family of disjoint translates that admits the GPs (W, ABCW,), (W, BCAW,),
(W BACW,) is given by Katchalski et.al. [13]. The figure below illustrates a family admitting
the GPs of triple 4:
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\ % e
L 1 ’
1\‘ //'
i ;—Z\B o
A X
o~ \)<
A A ; A> \°

Let [ be the line that contains the edge A. Let X lie such that the edge X5 lies slightly above
[, and B such that the edge By lies slightly below . C lies such that the only opposing edges
between A and C are {Ay,C5}, and such that the only opposing edges between X and C are
{C3, Xs}. Now rotate the line I, counterclockwise, about the vertex determined by Ay and As,
such that [ still meets B and X. We rotate the line until it is about to leave X, and call the
limit-line {;. Similarly, we can rotate [, clockwise, about the vertex determined by A; and As,
such that [ still meets B and X. As before, we stop at the limit-line, ls. Now, move C upward,
such that the distance between A; and Cs becomes small enough that C' meets [; and lp. Then
I} will induce (CAXB) and Iy will induce (ACXB). Finally, let I3 be the descending line that
goes through the vertex of B determined by the edges Bs and B, and through the vertex of
C determined by the edges C3 and Cy4. By letting the translates be tall enough, /3 will induce
(ABCX).

The figure below shows that proposition 3.2 cannot be extended to apply for general families
of convex sets.

\

K:(AZCB)
\ :
i

7 R g
/ = \ | : (ABZC)

v :
m : (CAZB) \

/

We end this section with a closer look at a theorem by Smorodinsky et.al. [15] (also proved
independently by Asinowski and Katchalski). Their theorem states that there exists a constant
C, such that any family of more than C pairwise disjoint, congruent discs in the plane admits
at most two G Ps. We shall improve their result, and prove the following:
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Theorem 3.4. Any family of more than three pairwise disjoint. congruent discs in the plane
admits at most two geometric permutations.

Proof. By theorem 3.3 it suffices to show that a family consisting of four pairwise disjoint,
congruent discs admits at most two GPs.

Let A, B, C, and D be four disjoint discs of diameter 1, and assume the discs admit three
distinct GPs. By theorem 3.3 the triple of GPs must be one of the following:

{(ACBD),(BADC),(ABDC)}
{(DABC), (DBAC),(DBCA)}

We start with the first triple. Let a, b, ¢, and d be the centers of A, B, C, and D, respectively.
If the centers were collinear, the discs would admit only one GP. Thus, the convex hull of the
centers must be a triangle or a quadrilateral. However, the case in which the convex hull is
a triangle cannot occur. To see this, let [ be a transversal for the four discs. The orthogonal
projections of the centers on [ are contained in a segment [z,y] of I, where z and y are the orthog-
onal projections of two of the vertices of the triangle. The order of the orthogonal projections of
centers on the line then corresponds to the GP induced by [. This means that the center that
1s not a vertex of the triangle cannot be an “outer” element of the GP. But in the triple of GPs
we are considering, each of the four discs is an “outer” element in at least one of the GPs. Thus,
conv({a,b,c,d}) must be a quadrilateral.

Now the centers must be ordered (cyclic) a, b, d, c. To see this, let ! be a horizontal line
parallel to some line inducing the GP (BADC). We can then assume the centers lie above I,
such that when we traverse [ from left to right, the orthogonal projections of the centers on [ have
the order ..b..a..d..c.. Then d must lie to the right of the orthogonal line on [ which goes through
a, and to the left of the orthogonal line on [ which goes through ¢. Thus the centers must be
ordered either a, b, d, ¢ or a, b, ¢, d. Let m be a line parallel to some line inducing (ACBD).
By the same argument the centers must be ordered a, d, b, ¢ or a, b, d, ¢. The conclusion is
therefore that the centers must be ordered a, b, d, ¢, and we assume that the centers have this
order going counterclockwise.

We may assume that ¢ and b lie on the y-axis, such that if we let (0,v,) and (0,y,) be
the coordinates of a and b, respectively, then we have y, = —y, and vy, is positive. By the
disjointness of the discs we have that y, > % Let (z¢,y.) and (z4,y4) be the coordinates of
c and d, respectively. By the cyclic ordering of the centers, z. and x4 must be positive. If C
lies above the z-axis, the z-axis will separate B from A and C, and we cannot have the GP
(ABC). The same applies to D. By symmetry C' and D cannot lie below the z-axis. Thus,
Yer Ya € (_%a %)

The way the coordinate axes are defined, the separating tangents of A and B cross in the
origin, and the slopes have the same absolute value. Let [ be the ascending separating tangent
of A and B. C cannot lie above [ since this would imply that C' lics above the z-axis. The same
applies to D. If C lies below [, we can rotate [, clockwise, about the origin, such that we get
a line that separates A from B and C. It is then impossible to have the GP (BAC). Thus, C
cannot lie below [. The same applies for D. We conclude that [ is a common transversal for A,
B, C, and D. Let m be the descending separating tangent of A and B. By symmetry m is also
a common transversal for A, B, C, and D.

Now [ induces (BADC') and m induces (ABDC). To see this, first note that since ¢ lies in
the right half plane, [ cannot induce (CBA) and m cannot induce (C'AB).
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Assume that [ induces (BAC). Now note the following: if the quadrant determined by m and
| which does not contain A or B, spans an angle > 7, then C' caunot meet m at the same time
as [ induces (BAC). Thus, the angle must be less than 7. But then it is impossible for m to
induce (ACB) at the same time as [ induces (BAC), without losing the disjointness of the discs.
The conclusion is that it is impossible for m to induce (ACB) at the same time as | induces
(BAC). Since [ and m both are common transversals for A, B. €, and by the symmetry of the
situation, we have the following: | induces (BAC) if and only if m induces (ABC').

Now assume [ induces (BCA). It then follows from the previous observations that m also
must induce (ACB). The following is then possible: we can rotate [, counterclockwise, until the
line is parallel to the y-axis, while we the entire time induce (ACB). Similarly, we can rotate
m, clockwise, until it is parallel to the y-axis, while we the entire time induce (ACB). We will
then have traversed all directions for which A, B, C have a transversal, and since parallel lines
induce the same GP, A, B, and C only have one GP. Thus, [ induces (BAC) and m induces
(ABC). By substituting D for C in the above argument, we have that [ induces (BAD) and m
induces (ABD).

From the above discussion we conclude that ! must induce (BACD) or (BADC'). But since
there is a transversal inducing the GP (ABDC), | must induce (BADC), since (ABDC') and
(BACD) is an incompatible pair of GPs. Similarly m must induce (ABDC). From this it
follows that z4 < z.. This can be seen by considering the orthogonal projections of ¢ and d on
the lines [ and m.

Tverberg [17] proved (also proved independently by Wenger) that if a family of disjoint trans-
lates can be ordered such that each three members of the family have a transversal that induces
a GP in correspondence with the given ordering, then the family has a common transversal that
induces a GP in correspondence the given ordering. We shall now modify the given family such
that we obtain a critical GP, while preserving the three GPs and the disjointness of the discs.
In view of Tverberg’s result a GP becomes critical when some triple gets a critical GP. Since
the separation lines of the discs A and B first meet D and then meet C (after leaving A and
B), we can move C away from A and B, in the same direction as the line n that induces the
GP (ABDC). We move C in this direction, to the point where we lose one of the GPs. By the
compactness of the discs and the fact that lines which induce different GPs are non-parallel, it
is clear that such a point will exist. As mentioned, when a GP is critical, some triple must have
a critical GP, thus a line must separate one disc, say X, from two others, say Y and Z, such
that X N COTl’U(Y Wz 0

Since C is the disc we are moving, C' must be part of the critical GP Also, since we move
C in the same direction as the line m that induces (ABDC), none of the sub-permutations of
(ABDC) can become critical. Now start by assuming that the sets A, B, C are the ones that get
a critical GP. The critical GP cannot be (ABC) since this is contained in (ABDC'). Therefore
it must be one of the GPs (ACB) or (BAC) that becomes critical (or both). Now assume that
the sets A, C, D get a critical GP. This cannot be (ADC) since it is contained in (ABDC).
The only other possibility is that (ACD) becomes critical. Finally, assume that the sets B, C,
D get a critical GP. Since (BDC) is contained in (ABDC), it must be (CBD) that becomes
critical. Clearly after obtaining a critical GP, the cyclic order of the centers must be the same as
before, as we have seen that for any other cyclic ordering we caunot have the three given GPs.

We now have four possible candidates for the critical GP. We shall show that none of them
can occur. Assume that (ACB) is the critical GP. Then the line z = % separates C' from A
and B, such that the orthogonal projection of the centers of the discs on the line x = % have the

order ..a..c..b..d... But for this to happen we must have 54 < —3, a contradiction.
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Now suppose (BAC) is the critical GP. There then exists a line [; that separates A from B
and C such that the orthogonal projection of the centers on /; have the order ..b..a..d..c.. The
distance from b, a, and ¢ to [ is %, and the distance from d to [, is less than or equal to %
In addition, d must be contained in the open strip determined by the line through a which is
orthogonal on Iy, and the line through ¢ which is orthogonal on ;. It then follows that d must
either be contained in conv({a,b,c}), or the cyclic order of the centers is a,b.c.d. Both cases
are a contradiction. Thus, (BAC) cannot be the critical GP.

Consider the case where (ACD) is the critical GP. Then there exists a line I, that separates C
from A and D such that the orthogonal projection of the centers on Iy have the order ..a..c..b..d...
The distance from a, ¢, and d to [y is % and the distance from b to I, is less than or equal to é In
the same way as above, we have that either b is contained in conv({a,c,d}), or the cyclic order
of the centers is a,d,b,c. Both cases are contradictions. (A different way to exclude (ACD)
is observing that under the given conditions the slope of I, must be positive or oo, implying
Zg=n

Finally, assume (C'BD) is the critical GP. There then exists a line I3 that separates B from C
and D such that the distance from the centers is %, and the orthogonal projection of the centers
on l3, meet in the order ..a..c..b..d... The distance from a to [4 cannot be larger than % But
the slope of /3 must then be negative or co. This implies that z. < w4, contradicting the earlier
observation x4 < .. Therefore (CBD) cannot be the critical GP. This concludes the first part
of the proof. :

We now assume that the discs admit the GPs (DABC), (DBAC), and (DBCA). We assume
the centers a, b, and ¢ are ordered as before. We now move D away from A, B, and C in the
same direction as one of the transversals inducing (DABC). As before we continue moving D
until we obtain some critical GP. Since A, B, and C, do not move during this process, D must
be contained in the critical GP.

Assume first that the sets B, C, D are the ones that get the critical GP. Each of the three
GPs contain (DBC'), and therefore this must be the critical GP. But the unique transversal
inducing (DBC') must then induce (DABC') and (DBAC), a contradiction.

We now assume that the sets A, B, D are the ones that get a critical GP. Since we are moving
D in the same direction as one of the transversals inducing (DABC), the critical GP cannot be
(DAB). The only other alternative is that (DBA) is the critical GP. But the unique transversal
inducing (DBA) must then induce (DBCA) and (DBAC), a contradiction.

It must therefore be the sets A, C, D that get a critical GP. And since (DAC) is contained in
(DABC), this cannot be the critical GP. Therefore (DCA) must be the critical GP, and thus
there exists a unique line m that induces the GP (DCA), and that separates C from A and D.

We now move D away from A, B, and C' along the unique transversal m. By similar arguments
as those above, it can be seen that (DAB) is the critical GP. Therefore there exists a unique
line [ that induces (DAB), and that separates A from B and D.

Let [pq be the line through b and d. Since [ separates A from B and D, the distance from a to
lpq 1s 1, the distance from ¢ to lg is less than 1, and the orthogonal projections of the centers on
lpq have the order ..d..a..b..c... Similarly, let m,, be the line through a and d. Then the distance
from ¢ to mgg is 1,the distance from b to mgg is less than 1, and the orthogonal projections of the
centers on mgg have the order ..a..c..b..d... As earlier we must have one of the following cases:
conv({a,b,c,d}) is either a triangle or a quadrilateral.

We start with considering the case where conv({a,b,c,d}) is a triangle. Note that A, C, and
D each are “outer” elements of at least one of the three GPs and B is not an “outer” element of
any of the GPs. This means that the a, ¢, and d must be the vertices of conv({a,b,c,d}).
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Without loss of generality we may assume that a and d lie on the z-axis, such that a is at the
origin and z4 > 1, where x4 denotes the z-coordinate of the point d. Let [ be the line that goes
through the point d and is tangent to the unit circle in the first quadrant. Let a' be the point of
tangency, and let ¢’ be the point where [ intersects the line y = 1.

Since the distance from a to [y is 1, b must lie on [ and below the line y = 1. If b lay
above the line y = 1 the distance from b to mgq would be greater than 1. For the order of the
orthogonal projections of the centers on lpg to be correct, b must lie between «’ and ¢’. Let n be
the orthogonal projection of b on the line y = 1. The situation is illustrated in the figure below.

Ly

d

[

Since the distance from ¢ to mgg is 1, ¢ must lie on the line y = 1. For the orthogonal
projections of the centers on mgg to have the correct order, and for conv({a,b,c, d}) to be a
triangle, ¢ must lie between ¢’ and n. By noting that |¢'d| = x4 and considering Aaa’d we have
the following:

|be

< la'el<zg /2 — 1

And since x4 > 1, we have |bc| < 1, contradicting the disjointness of the discs B and C.

Now assume conv({a,b,c,d}) is a quadrilateral. There are three ways the centers can be
ordered (cyclic). By a similar argument as the one used in the first part of the proof one sees
that the cyclic order of the centers must be a,d, b, c. We can therefore assume that b and d lie on
the z-axis such that b is at the origin and z4 < —1. For the order of the orthogonal projection of
the centers on [,y to be correct, ¢ must lie in the first quadrant. By the disjointness of the discs,
¢ must lie outside the unit circle. Further, ¢ must lie below the line y = 1. The point a must lie
on the line y = 1 since the distance from a to ljg is 1. Further, if z, denotes the z-coordinate of
a, we must have z4 < —1 < z, < 0.

Let m be the line through d and a. The distance from ¢ to m must equal 1. Let m' be the line
which is paralell to m and goes through the point ¢. Let a’ be the orthogonal projection of a on
the line m’. The orthogonal projections of the centers on the line m' have the order ..d..b..c..a..
This implies that ¢ must lie below @’ on the line /. The situation is illustrated in the figure
below.
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m

m’

The figure above indicates that the point a’ has distance less than 1 from b. In order to see
this, observe first that for a fixed slope of m, the distance increases when m is moved to the right.
Thus we only have to consider the limit cases when a = (0,1) or d = (—1,0). Easy calculations
show that distance 1 is only assumed for a = (—1,1), d = (—1,0). Thus a’ really belongs to the
open unit disc around b, and so does ¢. But we found before that ¢ is outside the unit disc. O

4. BAD QUADRUPLES

If four disjoint translates in the plane have T'(3) but not 7', the family is called a bad quadruple.
Such a quadruple can be represented as {m,mo, 73, m4}, where each m; is a GP of one of the
triples of the quadruple. In what follows we assume that each triple has only one GP. If two
quadruples can be represented by the same four G Ps, we say that they are equivalent. We start
with showing that there exist exactly three different bad quadruples. By rearranging the names
of the sets we can always assume we have the GP (ABC). Given a quadruple, we see that the
four “middle” elements of the permutations are either all distinct, three are distinct, or two are
distinct. Clearly an element cannot occur in all four of the GPs. Now assume all the “middle”
elements are distinct. Recall that we have assumed the existence of (ABC'). The quadruple then
looks like

HAB@E (A O, (D
This leads to two different quadruples. This can be seen by observing that the pair { A, C'} must
be contained in one of the other GPs, and they must then either be adjacent, or not. This gives
us the following quadruples

{(ABC), (BAD), (BCD), (ADC)}
{(ABC),(CAD),(BCD), (ADB)}

It is easy to see that these will represent all the quadruples with four distinct “middle” elements.
A similar analysis of the other possible configurations of the “middle” elements yields the following
list of quadruples:
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Q. = {(ABC),(BCD),(ACD), (ABD)},
Q. = {(ABC),(BDC),(ADC), (ADB)},
Qs = {(ABC),(CBD),(ADC),(BAD)},
Qs = {(ABC),(BCD), (ADC),(BAD)}.
Qs = {(ABC), (BCD),(ACD),(ADB)},
Q¢ = {(ABC),(BCD),(CAD),(ADB)}.

As it turns out, however, all of these quadruples do not represent an actual “oeometric” bad
quadruple of disjoint translates. This can be shown as follows. The ()1-quadruple can be ordered
such that each of the three GPs correspond to this ordering, thus, by Hadwiger’s theorem (Th.
89, [9]) the quadruple admits a transversal and is therefore not a bad quadruple. The quadruples
Q)5 and Qg cannot exist by the following observation by Tverberg [17]: If a family F' of disjoint
translates has T(3) then there exists two sets X and Y in F such that each member of. A L XY ]
meets conv(X UY)\ (X UY). The sets X and Y will be called Eckhoff sets (they originate from
Eckhoff [4],[5]), and the segments that form the boundary of conv(X UY)\ (X UY) will be called
Ekchoff segments. For our particular situation this means that there exist two sets X and Y such
that the we have the GPs (XAY) and (XBY) for the two other sets A and B of the quadruple.
Thus a quadruple admitting only the GPs from either Q5 or (s cannot exist, since there does
not exist Eckhoff sets. The figure below illustrates examples of the three bad quadruples.

A i @ 2t

R Rt

In the case when a triple has more than one GP, we say that the quadruple is for example
of type @3/Q4. The figure below illustrates the possible combinations. Note that the combined
bad quadruple Q2/Q4 cannot exist without also being of type (Js.
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0,/0,

In connection with proposition 2.4 we defined total separability. In the plane a family of
subsets is said to be totally separable if there exists a direction such that any line in this direction
meets at most one of the sets of the family. Three sets that are totally separable will be called
a separable triple (if it is not separable we say it is inseparable). By separation we will mean
weak separation and specity the cases when we mean proper separation. A separation line of
two closed sets is a line that is tangent to the two sets and which also separates them. We now
establish some basic properties of separable triples.

Lemma 4.1. A separable triple of compact convez sets in the plane has at most one GP.

Proof. Let A, B, and C be a separable triple in the plane. By definition there exists a direction
D (which we define to be vertical for the sake of the argument) such that any line in this direction
meets at most one of the sets. It follows that the sets lie in separate parallel strips and we may
assume that B is contained in the middle strip, A in the left strip, and C' in the right strip.
Clearly C Nconv(AU B) = 0 and AN conv(C U B) = (), thus we cannot have the GPs (ACB)
and (BAC). d

Let K be a centrally symmetric convex set with diameter d. For a family F' of translates of
K, let do(X,Y), (X,Y € F) denote the distance between the centers of X and Y. Let A, B,
and C be translates of K. We then have the following:

Lemma 4.2. If A, B, and C have a common transversal and d.(X,Y) > \/2d for each pair
X A e TABICT. X =Y fthen 1A B, O is a separable irple:

Proof. 1t is easy to see that the lemma is valid when K is a disc of diameter d. For general K
the result follows by inscribing K in a disc of diameter d. O
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Consider a separable triple of translates, {A. B, C'}, admitting a common transversal inducing
(ABC). In particular we can assume that B meets the upper Eckhoff segment, and we let this
define the horizontal direction. We may assume that when we traverse the line which contains
the upper segment Eckhoff segment from left to right, we meet the sets in the order ..A.B..C..

Since the triple is separable there exists two parallel lines, [ and m, such that [ separates A
from B, and m separates B from C. Now rotate the line [ clockwise, until it is tangent to both
A and B. Call this separation line of A and B, I'. Similarly we can rotate m counterclockwise,
until it is tangent to both B and C. Call this separation line of B and C, m’. Since [ and m were
parallel, it is clear that I’ and m' must intersect above the line that contains the upper Eckhoft
segment. It is easy to see that the situation we have described here occurs if and only if the
triple {4, B, C} is separable (if the triple were inseparable, the separation lines would either be
parallel or cross each other below the upper segment of conv(A U C)). This observation will be
useful in cases where we wish to determine whether a triple is separable or not. The described
property is clearly an affine invariant. The figure below illustrates the situation.

We shall now prove that every bad quadruple of translates must contain an inseparable triple.
In view of lemma 4.1 we need only prove that each of the bad quadruples ()2, @3, Q4 must have
an inseparable triple.

Proposition 4.3. A bad quadruple of Type Q2 contains an inseparable triple.

Proof. Assume the opposite and let {A, B,C, D} be a bad quadruple of Type (02, where each
triple is separable. Let A and D be the Eckhoff sets, and define the direction of the Eckhotf
segments to be the horizontal direction. Without loss of generality we may assume that A lies
to the left of D, B meets the upper Eckhoff segment, and C meets the lower Eckhoff segment.
such that we have the GPs (ABD), (ACD), (ACB), and (BCD).

Let D, and Ds be the directions of total separability for the triples {A,C, B} and {B.C. D},
respectively. Let [; and Iy be the lines in the direction D; such that [ separates {A, C'} and [y
separates {C, B}. Let m; and mg be the lines in the direction D» such that m, separates B G
and my separates {C,D}. The lines [y, Iy, m|, and my exist by the total separability, and C
must be contained in the interior of the parallelogram defined by these lines. B must lie in the
upper open quadrant defined by the lines I and m;. Now D must lie below my by the total
separability and meet (or lie below) I by the condition of T'(3). Similarly A must lie below [,
and meet (or lie below) m;. The situation is illustrated in the figure below.
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It is easy to see that when the properties stated above are satisfied, B will lic above the upper
Eckhoff segment. The contradiction completes the proof. O

Proposition 4.4. A bad quadruple of Type Q3 contains an inseparable triple.

Proof. Let {A,B,C,D} be a bad quadruple of Type @3, where A and D are the Eckhoff sets
and let the Eckhoff segments define the horizontal direction. Without loss of generality we may
assume that A lies to the left of D, that B meets the upper Eckhoft segment, and C' meets the
lower Eckhoff segment. Further we may assume we have the GPs (BAC) and (BCD).

Since we have (BAC), A will meet the left segment of conv(BUC)\ (BUC), and by an affine
transformation we may assume that the segments of conv(B U C) \ (B U C) are orthogonal on
the the segments of conv(A U D)\ (AU D). Let [ be a line that properly separates A and B,
and let m be a line that properly separates A and C. Rotate [ counterclockwise until it becomes
a separation line, /', for A and B, which must have a slope that is negative or (. Similarly,
rotate m clockwise until it becomes a separation line, m', for A and C, which must have a slope
that is positive or 0. It follows that I’ and m' are either parallel or they cross each other to the
right of the line that contains the left segment of conv(B U C)\ (BUC), and thus {4, B,C} is
inseparable. O

Proposition 4.5. A bad quadruple of Type Q4 contains an inseparable triple.

Proof. Since we did not use the GP (BCD) in the proof of proposition 4.4, the same reasoning
applies for the Q4-quadruple. Note also that by the symmetry of the Q4-quadruple, every triple
1s inseparable. ; ]

Let F' be a family of sets in the plane. If F' is totally separable we say that F has the property
S. If every n-tuple of F is totally separable, we say that F has the property S(n). We conclude
this section with the following:

Theorem 4.6. Let F' be a family of disjoint translates, and assume that F has S(3). Then
TL(8)) == 90
Proof. Let F be a family of disjoint translates, and assume each triple is separable. By proposi-
tions 4.3 - 4.5 we know that F' has 7'(4), and by lemma 4.1 each triple has exactly one GP. We
shall show that for any five translates there exists an ordering such that each three translates
have a transversal inducing a G'P in correspondence with the ordering.

Let {A,B,C,D,X} C F. Each quadruple can only have one GP, or else some triple would
have two G Ps. We can without loss of generality assume that we have the GP (ABCD). Further,
by symmetry, we may assume that we have either (ABCX) or (ABXC).
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Assume first that we have (ABCX). It then follows that we must have either (ACX D) or
(ACDX). If X were positioned any other place, the triple {A,C, X} would have more than
one GP. Now, if we have (ACXD) we must also have (BCXD), and each triple will have a
GP in correspondence with the ordering A, B,C, X, D. If we have (ACDX) we must also have
(BCDX), and then each triple has a GP in correspondence with the ordering A; B, G:D X

Now assume we have (ABXC). It follows that we must have either (ABDX) or (ABXD).
But if we have (ABDX), we must also have (ADXC), but in this case we have the GPs (ACD)
and (ADC). Thus, we must have (ABXD). It then follows that we must have (AXCD) and
each triple has a GP in correspondence with the ordering A4, B, X, C. D.

We have shown that for any five translates there exists an ordering such that each three trans-
lates have a transversal inducing a GP in correspondence with the ordering, and by Hadwiger’s
theorem [9] the five translates have a common transversal. Thus. by Tverberg’s theorem [16], F
admits a common transversal. O

5. THE KATCHALSKI-LEWIS CONJECTURE

We say that a family F of subsets in the plane has the property 7' — k, k a nonnegative integer,
if there is a straight line that intersects all but at most k members of F. In [12] Katchalski and
Lewis prove the following theorem:

Theorem 5.1. There erxists a positive integer k such that for any family F of pairwise disjoint
translates of a compact conver set K, T(3) implies T — k.

They obtain an upper bound of k£ < 603, but remark that there is room for improvement.
They conjecture, however, that the value k = 2 is universal for families of disjoint translates. It
is clear that the disjointness is necessary in theorem 5.1, and it is possible to construct a family
of segments that shows that there is no universal value of & when one allows rotations as well as
translations. We shall first improve on Katchalski and Lewis’ upper bound on % and prove the
following:

Theorem 5.2. There erists a positive integer k < 57 such that for any family F of pairwise
disjoint translates of a compact conver set K, T(3) implies T — k.

Proof. We shall mainly follow the proof of Katchalski and Lewis [12]. Clearly the transversal
properties are affine invariants, and by the propositions in section 2, we may assume the sets to
be translates of a centrally symmetric compact convex set K. Further we may assume that K
is a polygon. This was shown by Tverberg [16], but can also be shown as follows: It is known
that if F is an infinite family, then 7'(3) implies T (e.g. see prop. 91 of [9]), thus we may assume
that |F| = N. Let {K +v;,, K + v;,, K + v;,} be some triple of F'. Since F has T'(3), the triple
{K + v, K +v;,, K+ v;,} has a transversal [, and there exists a central chord of S C K such
that [ is a transversal for {S + v, S + viy, S + v;3}. Doing this for every triple of F' results
in (g) central chords Si,..., S(];l) 1Lt S = oS Ul =0 U S(A\J')). Then K" is a centrally
symmetric convex polygon and the family F” = {K" + v;,i € I} will have T'(3). Since K" C K,
the disjointness is preserved, and a subfamily {K" + v;,..., K" +v;,} C F" has a transversal
only if the subfamily {K + v;,,..., K + ’Uij} C F has one. Thus. we need only consider the case
in which K is a centrally symmetric convex polygon.

Now let K be a centrally symmetric convex polygon. Then there exists an affine transformation

A such that diam(AK) = d and the area of AK is greater than or equal to % This follows from

the fact that there exists an affine transformation A such that AK has its center at the origin
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and D' ¢ AK C D, where D is the disc of radius ¢ with center in the origin, and D’ is the disc

2
of radius % with center in the origin. We refer to Behrend [1] for the details. Furthermore, we
must have one of the following cases: (1) AK has two vertices v; and v; that lie on the boundary
of D such that the angle between v;, the origin, and v; equals 3. (2) AK has three vertices v;,
vj, vg that lie on the boundary of D such that if we let «, 8, v be the angles between v; and 0

v; and vk, v and v; (v] is the the vertex opposite of v;), respectively, then 0 < «, 3,7 < 7

v/

In case (1), conv({vi,v;,v;,v}}) is a square with sides of length L "and by the convexity, this

\/57
square must be contained in AK. Thus, the area of AK must be greater than or equal to %
In case (2}, one considers the triangles Ty = conv({v;,v;,0}), To = conv({v;,v,0}), and
T3 = conv({vg,v;,0}). It suffices to show that the sum of the areas of these three triangles is

U

: : _ 2 ol
greater than or equal to 7. The area of the three triangles are, respectively, ‘15% danp

) 8 bl

i

d%]l, and further we have v = m — (a + ). Thus, the sum of the area of the three triangles is
dz

g(sin o+ sin 5 + siny)

and'sinee 0 < a, 8,7 < 7, we have

2 < (sina + sin f + sinvy)

Thus, the area of the AK is greater than d;.

We shall now show that we can assume there exist three translates { K, Ky, K3} in F such
Rl d ARG V2d, for 4,5 € {1,2,3},i # j. Assume first that F does not contain any pair
{X,Y} such that d.(X,Y) > v2d. Thus the point set consisting of the centers of the translates
of F has diameter < v/2d. By the plane case of Jung’s theorem, the centers can be covered by
a disc of radius %d This means that the translates of F' can be covered by a disc of radius
(% + $)d, and since the minimal area of a translate is %) and the translates are disjoint, we find

that F' contains at most

P = 10 translates
s2r
Since any family of less than 11 translates trivially satisfies 7'—4 (cousider the Eckhoff segments)

we may assume that F contains a pair {X,Y} such that d.(X,Y) > v/2d.
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A family of less than 51 translates trivially satisfies 7' — 24, therefore let F' be a family of at
least 51 disjoint translates. Consider the graph G where each vertex represents a translate of F'.
Two vertices are connected by an edge if and ounly if the corresponding translates {X,Y } have
d.(X,Y) < v/2d. Now |V(G)| > 51 while the Ramsey number R(3,11) does not exceed 51 (see
[14]), thus G has a clique of size at least 11 or G has at least 3 independent vertices. But the
former case was excluded above, and so G has 3 independent vertices corresponding to a triple
(K, Ky, K3} in F such that de(K;, K;) > v2d, for 4,5 € {1,2,3},4 # j.

We now return to the family F of translates of a centrally symmetric convex polygon K of
diameter d. If F has T'(3) there exist three discs of radius (o iz )d. such that there is a common
transversal for all members of F' that are not contained in any one of these discs. To see this we
shrink each member of F by a factor A € [0, 1] about the center of symmetry, obtaining a family
AF for each value of \. So far this would just be Klee’s shrinking process, where one would
choose the minimal X' € [0, 1] such that X'F has T'(3) but for every A < X', AF does not. Clearly
for every subfamily AM C AF that has a transversal, the corresponding subfamily M C F also
has a transversal. Note also that for every AX,\Y € AF and the corresponding X,Y € F we
have d 0K AYE=—id L0

Instead of choosing the A’ mentioned above, we choose the minimal Ag € [0, 1] such that
each triple {\gK1, AoK2, Ao K3} C AoF has a transversal whenever d.(K;, K;) > V2d, for i,j €
{1,2,3},% # j. The existence of such a Ag is established by standard compactness arguments.
Since )¢ is minimal there must exist some triple {4, B,C} C F such that the corresponding
triple {AoA, A\oB,AoC} has a unique transversal [. Now, if a translate AgX € A\gF does not
meet [, then d.(AoX, oY) < V2d for some AY € {4, B, C}. To see this, assume
thatid (A X Do) > V2d for every AY € {AoA, \oB, C}. By the choice of Ay, the family
{XoA, XoB, \C, A X} has T(3), but since AgX misses [, this must be a bad quadruple. By
lemma 4.2 every triple is totally separable, and by theorem 4.6 the quadruple must admit a
transversal, contradicting the assumption that AgX misses [. Thus, we can find three discs of
radius (V2 + %)d such that the members of F' that are not contained in any of these discs all
meet [.

For a family F of disjoint translates we can thus assume there exist three discs of radius
(V2 + %)d such that the translates that are not contained in any of these discs have a common
transversal. Let P be the point set consisting of the centers of the translates of F. Since F
has T'(3), each three points of P are contained in some strip of width d. It can then easily be
verified that the entire point set P is contained in some strip of width 2d. Further, this means
that some strip of width 3d covers all the members of F (this can also be seen by considering
the Eckhoff segments). Thus, the bad translates (the ones that miss the line [ defined above) lie
not only in one of the discs of radius (V2 + %)d, but also in a strip of width 3d, and the area
where the bad translates can lie must be less than (or equal to) three times the maximal area
of the intersection of one of the discs and the strip. Clearly this area is maximal when the strip
cuts across the middle of the disc, and the largest possible area for such a disc is:

3d
maniarea — 4 / \/(\/5 + 5)2(11 — 22 dz < 10.2d?
J 0

Since the translates are disjoint and the minimal area of a translate equals 4 the maximal
number of translates contained in one of the (reduced) discs 1s

10.2d?
) 2( =~ )

=
=9

vl
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where one of the translates is either A, B, or C. Thus each of the three discs contain at most 19
translates that do not meet {. Therefore we get T'(3) = T — 57. O

Remark 1. A conjecture by Eckhoff [4] states that if a point set is such that every three points
can be covered by a strip of width 1, the entire point set can be covered by a strip of width %
If this conjecture is true, the value of & is less than or equal to 51.

Remark 2. The proof of theorem 5.2 ends with making a crude estimate of the number of
translates that can lie in the “bad” discs. This method is similar to the one used by Katchalski
and Lewis in their original proof [12], and does not use the fact that the family satisfies TR
Since the translates may be assumed to be on Behrand’s “standard” form they are in a certain
sense “fat”. A possible approach to lower the value of k is to find out how many disjoint translates
X1,... Xy that can lie about a given translate A such that d.(A.X;) < v2d, foralli=1...n.
and such that the family {A, X,,..., X,,} satisfies T'(3). We have not vet studied this extensively,
but the following example shows that n > 7.

X, X, | X3 X,

i ook K e M

In the figure above the translates that are adjacent (e.g. X and X;) are at distance ¢ apart.

Thus when € — 0 we have d.(4, X;) — ‘2/?2‘] < v/2d. This shows that the best we can hope for

with this approach is T'(3) = T — 21.

Remark 3. 1 have now started to work on a modified procedure, where the translates are not
shrunk, but where instead one of the Eckhoff sets is “moved” away in the direction of the Eckhoff
segments (this is an idea introduced in [17]). One stops when one of the distinguished triples
becomes critical. This seems promising, as the family changes very little, and the “new” Eckhoff
set is contained in the critical triple, so we know more about it.

6. EXAMPLES OF FAMILIES OF DISJOINT TRANSLATES

We have been able to prove T'(3) = T — 57, but the number 57 is obviously still too large.
Tverberg [17] suggests that a possible approach to the Katchalski-Lewis conjecture would be to
study smaller families with the property T'(3) and gain as much information about their behavior
as possible, so that we can study larger families without too many geometric considerations.

We shall now take a closer look at families that satisty 7'(3), and we start with a construction
by A. Bezdek [2] which exhibits a family of n disjoint unit discs that satisfies 7'(3) but not 7 — 1.
The construction depends on four reference lines. Let v; and vy be two vertical lines that are at
distance 2(n —4) apart, and let h; and hs be two horizontal lines that are at a distance e apart.
He continues by arranging the n discs ¢y, . . ., ¢, at positions described by the four reference lines.
The construction is illustrated below. For more details on the construction, see |2].
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We shall now construct a different family of unit discs that satisfies 7'(3) but not T'— 1. Let
dy, do, ds, and d4 be four unit discs that lie in different quadrants such that the centers are
placed at (1,1), (=1,1), (=1,—1), and (1, —1). respectively (the discs are not disjoint, but this
will be taken care of). For a € > 0 we move the discs away from the z- and the y-axis such
that the centers now have the coordinates (1 +¢,1+¢), (-1 —¢,1+¢), (-1 —c.—1 —¢), and
(1+¢,—1—¢), respectively. Let [ be the ascending separation line of d; and d3 such that d; and
d- lie in the same closed half plane determined by [, and d3 and dy lie in the other closed half
plane determined by I. Let ds be a disc that is tangent to [ such that it lies to the right of dy
and in the same closed half plane determined by [ as d3 and d4. € must be chosen to be small
enough that ds meets the descending separation line of dy and d3. (see the figure below)

Let m be the descending separation line of dy and dy4 such that d; and ds lie in the same closed
half plane determined by m and d3 and dy lie in the other closed half plane determined by m.
Let dg be a disc that is tangent to m such that it lies to the right of ds and in the same closed
half plane determined by m as d; and dy. Again £ must be chosen small enough that dg meets
the ascending separation line of dy and ds. Let di and dg; be the reflections of ds and dg about
the y-axis, respectively.

It is easily verified that the construction satisfies T'(3). It is also easy to see that the con-
struction does not have T'— 1. To see this consider the ascending separation line, s, , and the
descending separation line s_ of dy and d3. The family is constructed such that s, will meet dg
but not ds. s_ will meet d5 but not dg, thus, the quadruple {dy,d3,ds,ds} is a bad quadruple
(Type Q3). By symmetry, {di,ds,ds,dy} is also a bad quadruple. In other words the family
consists of two disjoint bad quadruples and can therefore not have T'— 1. It is also easy to see
that the construction can be extended to contain any finite number of discs. This is done by
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adding discs to the left of d and to the right of dg with centers on the z-axis. The property
T'(3) will be preserved when ¢ is chosen to be small enough.

The constructions above show that the Katchalski-Lewis conjecture is best possible, in the
sense that we cannot have T'(3) = T — 1. Tverberg [17] suggests that the following steps should
be studied as a way of proving the Katchalski-Lewis conjecture (with the obvious notation):

0 RS0 e R R g

This would obviously imply the K.-L. conjecture, however, our construction that contains two
distinct quadruples provides a counterexample to the statement 7'(3) = T(4) — 1. It is also easy
to check that the bad quadruples of Bezdek’s construction cannot be represented by one element,
therefore this is also a counterexample to the statement in question. Tverberg [17] also suggests
to try proving the following:

T(3) =P (4G SR e T 0

This would yield a weaker version of the K.-L. conjecture, namely T'(3) = T — 4. We shall
comment on this approach later. First we shall make an important observation concerning the
constructions above.

The main difference between Bezdek’s construction and our construction is that our construc-
tion contains two distinct quadruples while Bezdek’s does not. However, it is more important to
note the similarities of the constructions (which are independent). Both the examples contain a
(Q4-quadruple that practically determines the complete outcome. In Bezdek’s construction the
discs ¢y, ¢2, ¢h—1, and ¢, constitute a (Q4-quadruple, and in our construction we find the similar
sets dy, da, d3, dg. When adding further discs in Bezdek’s example, they must all meet the lines
hy and hy for the family to satisfy 7'(3), and in our example they must meet the equivalent lines.
Thus, both constructions always end up satistying 7' — 2. It would therefore be natural to try
constructing a (4-quadruple which is such that one can add further translates which do not meet
both these lines (while satisfying 7°(3)). As it turns out, this is possible, and the construction is
illustrated in the figure below.

K, KS_.»'“KG

.K| K7 K3

The translates K, K3. K4, K¢ form a (Q4-quadruple, and we have added two additional
translates Ky and K5 which each only meet one of the two lines that correspond to A; and hy in
Bezdek’s example. In what follows we shall show that this simple arrangement can, surprisingly,
be extended to a counterexample to the K.-L. conjecture.

Theorem 6.1. There exists a family of disjoint translates in the plane which satisfies T'(3) but
not T — 2.

Proof. Let K be a square with sides of length 1, where the sides are parallel to the z- and y-axis.
Let K, Ko, K3 be translates of K. Let the NW-corner of K; lie at the origin. Now K, and K3
shall be tangent to the z-axis from below such that Ky lies directly to the right of K;, and K3
lies directly to the right of Ky. Further let the distance between K; and K> be ¢, and let the
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distance between Ko and K3 also be €. Let Ky, K, K be translates of K that are tangent to
the line y = € from above. Ky lies such that the part above K is as big as the part above K.
K lies such that equal parts lie above K, and K3. Kjg lies such that the distance between K
and K is €. So far the construction consists of the example in the previous figure. Clearly the
translates are disjoint for all € > 0.

Define three reference lines [, m, n as follows: Let [ be the ascending line that goes through
the NW-corner of K; and the SE-corner of K5. Let m be the ascending line that goes through
the NW-corner of Ky and the SE-corner of K. Finally, let n be the descending line that goes
through the SW-corner of K4 and the NE-corner of K3. Note that [ and m are parallel, and
that the slope of the three reference lines is a function of e. We shall now place three translates
K+, Kg, and Ky, such that their positions are described by the lines [, m, n.

Let K7 lie to the left of K such that n goes through its NE-corner, let Ky lie to the left of
K- such that m goes through its SE-corner, and let Kq lie to the right of K such that [ goes
through its NW-corner. Now, ¢ must be chosen small enough such that (1) Ky meets the line
through the SW-corner of K4 and the NE-corner of K1, (2) Kg meets the line that goes through
the SW-corner of K¢ and the NE-corner of K3, and (3) K7 meets the line that goes through the
SE-corner of K5 and the NW-corner of K3. Clearly by choosing ¢ small enough, the construction
will have T'(3). It is also easy to see that the family can be extended to contain any finite number
of translates. The construction is illustrated on the next page.

We shall now prove that the family does not have 7' — 2. By the construction the following
triples are critical (i.e. have a unique transversal):

{Kl,K;),Kg} {Kg,KQ,Kg} {K7.}f4.I{3}
Clearly the critical triples constitute the entire family. The unique transversals are the reference
lines I, m, and n. It can easily be checked that these lines will not give T — 2, in other words, if
there exists a line that induces T'— 2 it must be some other line than [, m, or n. But every other

line must miss at least one of the sets in each of the three critical triples, and since the critical
triples consist of distinct elements, the construction cannot have T5. O

Remark: A final observation concerning the construction is that we will have the following
bad quadruples:
(K Ka, Ky, K5} B B Kol K5, K, Ke, K}
TR B K, KoY [ He o e, G Y T (K, K, K3, Ki)
where , i € {2,3,4},5 € {3,4,5},k € {1,2,5,6}
It can easily be verified that the bad quadruples cannot be represented by two elements. Therefore

the construction is also a counterexample to Tverberg’s suggestion of showing T'(3) = T'(4) — 2
(This also shows that the family does not have T' — 2).
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In the previous construction it turns out that the six first translates restrict the positioning of
the remaining ones. In particular it can be seen that a translate added, after the first six, must
meet the z-axis and the line y = ¢, thus we always end up with 7'— 3. The idea behind the next
construction is to avoid this problem.

Theorem 6.2. There ezists a family of disjoint translates in the plane which satisfies T'(3) but
@i I = 3

Proof. We shall construct a family of translates with properties 7'(3) and 7' — 4. but not 7" — 3.
Let K be a square with sides of length 1 that are parallel to the coordinate axes. For some

0 < €1 < €3, let I; and [} be the lines y = €, and y = —e, respectively, and let > and l5 be
the lines y = €2 and y = —éo, respectively (g1 and €2 are to be defined later). Since the edges

of K are parallel to the coordinate axes, it is natural to describe the relative positions of the
translates with expressions as above, below, to the left of, and to the right of etc. Let A, B, Gl
and E be translates of K that lie to the right of the y-axis. Of the five translates A lies farthest
to the left, and ] is the lower support line of A. D lies to the right of A and has [, as its upper
support line. €1 must be small enough, such that A meets [; and D meets li. B lies below A,
further to the right than A, but not to the right of A. Further, B lies to the left of D, and [; is
the the upper support line of B. C lies above D, further to the left than D, but not to the left
of D. Further, C lies to the right of A, and [y is the lower support line of C. £, must be small
enough, such that Iy meets A and I meets D. To gain more symmetry in the construction we
demand that the orthogonal projections of AUB, BUC, and C U D on the z-axis, are of equal
length. Finally, E lies to the right of D such that E meets Iy and I5.

We now add 5 new translates, A’, B’, C', D', and E’, which are the reflections about the
y-axis of A, B, C, D, and E, respectively. The situation so far is illustrated in the figure below.

y

We shall now move the translates a bit, without altering their relative positions, such that the
family satisfies the condition T(3). The family shall at all time be symmetric about the y-axis.
such that when we move any translate, it is understood that we also move the translate in the
opposite half plane.

The first thing we do is to make {B’, A, D} a critical triple. This means that the ascending
separation line of A and D must meet the NW-corner of B’. This is done by choosing ¢, and e
appropriately. When this is done, {B, A’, D'} will of course also be a critical triple.

We shall now make {B’,C, E} a critical triple. This means that the NW-corner of E must
meet the line that goes through the NW-corner of B’ and the SE-corner of C. This is done by
moving E in the vertical direction. The following is however essential: A’ must not meet the
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critical transversal of {B',C, E}. If A’ meets this critical transversal we must go back one step,
and choose 1 smaller. It then follows that e, also becomes smaller (since 1B A DGS allevitical
triple), and when ey is small enough, A’ will lie above the critical transversal of 1B, C.E}. By
symmetry, A will miss the critical transversal of {B,C’, E'}.

The next thing we have to do is make sure that the line that goes through the SW-corner of
C and the NE-corner of B, induces the GP (C'A'ACBDE); the slope of this line is a function
of £, and therefore it is clear that when €5 is chosen to be small enough, this will be possible.
We might however have to go back a step and make e smaller to preserve the other properties.
By symmetry we will also have the GP (E'D'B'C'A'AC).

Finally we must ensure that the line that goes through the NW-corner of D and the SE-corner
of €, induces the GP (E'D'B'BDC). Again this is done by choosing €, and e, adequately
small, and possibly going back some steps and make e; small enough to preserve the previous
properties. Since the line that goes through the NW-corner of B and the SE-corner of A is
parallel to the line that goes through the NW-corner of D and the SE-corner of O, it is easily
verified that we also have the GP (E'D'B'BAC).

It follows that we have T'(3), so far. We shall now add two more translates X and X’ (25
being the reflection of X about the y-axis). X lies to the right of E such that it meets I and 5.
We must make sure that X lies far enough to the right, such that it does not meet the descending
line that goes through the SW-corner of A" and the NE-corner of B’. Further, X must not meet
the ascending line that goes through the NW-corner of B’ and the SE-corner of ¢’. X must also
not meet the descending line that goes through the SW-corner of C' and the NE-corner of B.

Furthermore, X must meet the descending line that goes through the SW-corner of ¢’ and
the NE-corner of B'. This is possible when ; and &5 are small enough. Similarly, X must
meet the ascending line that goes through the NW-corner of B’ and the SE-corner of A, and
the ascending line that goes through the NW-corner of B and the SE-corner of C'. Again this
depends only on choosing €; and e small enough.

It follows easily that the family now has T'(3). An illustration of the family is given on the
next page. (For convenience we have chosen to scale the y-axis appropriately. The translates
therefore do not look like squares.)

We shall now show that the family does not have T' — 3. To do this we shall refer to the
following theorem by Hadwiger-Debrunner (see |9], prop. 25): If cach three rectangles of a family
of parallel rectangles are intersected by an ascending line, then there 4s an ascending line that
intersects all the rectangles of the family.

Assume there exists a transversal that meets all but at most three translates. It is easy to see
that such a transversal cannot be parallel to the z-axis. We may therefore, by symmetry, assumne
that this transversal is ascending. If a pair of translates only admit descending transversals, we
will call this a descending pair. We define descending triples similarly. Our construction consists
of the following descending pairs:

WO 2 D
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Every triple that contains a descending pair will naturally be a descending triple. Apart from
the triples that contain a descending pair, it is easily verified that we have the following descend-
ing triples:

A {A, B, E} A8 x0h
{C,D,E} (Dl @l bl
{4, €D} i, Gl o s o g Cats
{4, B, E} {ChBL LA Gl

{A"B',D} Be

Now, if there exists an ascending transversal that meets all but at most three translates, then
by Hadwiger-Debrunner’s theorem, we can remove three translates and thus “destroy” all the
descending triples. Or stated otherwise, the descending triples must be represented by at most
three elements. We shall show that this however is not the case.

We can start by concentrating on removing elements such that we destroy the descending
pairs. For if we still have a descending pair, after removing three elements, we cannot have
an ascending transversal that meets the remaining translates. It is easily verified that we must
remove at least two translates to destroy the descending pairs, and that every triple representing
the descending pairs contains at least one of the following pairs: {C', B}, {C', A’}, or {B,D}.
But these pairs represent the descending pairs, and it therefore suffices to check what happens

when these pairs have been removed.
We start by removing the pair {C’, B}. We are then left with the following descending triples:

L C DBl . ASCHp ORI SO S,
OISR ) o G
Removing the pair {C’, A'}, we are then left with the following descending triples:
{4, B s s A e
(6D Bl om0
{B,C,E}
Finally, if we remove the pair {B, D}, we are left with the following descending triples:
{Ja@ Bl X R e ) T
(AR S el S B )

It 1s easily verified that in each of the cases above the descending triples are not representable
by a single element. Thus, the family does not satisty T'— 3. Clearly a horizontal line can be
found that induces the GP (X'E'C'A’ACFEX), thus the family satisfies T — 4. O

It is possible to extend the family to any finite number of translates by adding translates to
the right of X and to the left of X', and choosing £; and &9 appropriately small to preserve T'(3).

Our construction clearly contains a large amount of bad quadruples. The list below represents
some of the bad quadruples (indicated by a row of four x’s):
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A B O D B o X AT R S Dl B e
BN Tab ot SR R T (el T
B RS IR SN B O e S
Sedenia b by b R R e R S R
R R o e e
reie HRE R e e R
S g - s RIS G SR B nc e
ED e e s L e e e e ol
Sl SR O IR, B SR bR SRS
SRR b - o B L N R R L < 2 51 S
byl el e gt e o LRSSt
s S e ATIE SR T SR
L o e i et sl
XX = el R
S i PN, TR MR T I i s e N

It can easily be verified that the bad quadruples cannot be represented by three elements.
Thus our construction also proves the statement T'(3) % T'(4) — 3, thus the best we can hope for
in this sense is T'(3) = T'(4) — 4.

Finally we note a special property of the above construction. When we start placing the
translates, we are free to chose how large the distance between A and the z-axis is. The same
applies for the distance between D and E. In particular the translates B’ and C can lie arbitrarily
far apart. The same goes for the translates C' and E. Further, the triple I'BC BYis by
construction, a critical triple. In the final section we shall discuss, in general, families that
contain a critical triple where the distance between the translates is “large”.

(Note: In the constructions of theorems 6.1 and 6.2 the positions of the translates could of
course have been given by explicit coordinates. These coordinates have been computed, but it
requires some rather tedious calculations which do not yield any extra insight to the constructions,
and has therefore been omitted from this paper.)

7. FINAL REMARKS
We have shown the following:

Theorem 7.1. Let F be a family of disjoint translates of a compact convex set in the plane.
Then T'(3) = T — k, where 4 < k < 57.

The upper bound of £ is clearly too high. In fact, we believe the lower bound to be the correct
value of k, although we do not have any concrete idea of how to prove this. Tverberg’s suggestion
of approaching the problem in the steps T'(3) = T'(4) —x and T'(4) = T —y, will yield a theorem
T(3) = T — z, where z = z + y, but in view of the comments in the previous section, we must
have z > 4, and simple examples show that y > 1. Thus, this approach cannot bring us closer
than T(3) = T — 5. The advantage of this approach was that the the first step could be limited
to a study of small families of translates (|F| < 12, see [17]); this however is no longer the case.
It therefore seems necessary to find a different way of attacking the problem. (The problem of
T(4) should nevertheless be studied in its own right).

The main difficulty in studying geometric transversals seems to be when the sets are close to
each other. When they are spread out the situation is easier to handle, as was seen in theorem
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4.6. Other examples of this can be seen in corollary 4 of [8] and proposition 92 of [9]. We shall
conclude this paper with showing that when a family of disjoint translates in the plane contains
a critical triple where the members of the triple are spread sufficiently far apart, the conclusion
TE) == 4iis yalid:

Let a 7-strip be a strip of breadth 7. By the direction of a strip we mean the direction of
the parallel lines that define the strip. A family of sets in the plane is said to be 7-separable if
there exists a direction such that any 7-strip in this direction meets at most one member of the
family. Thus, a family that is O-separable is what we earlier called totally separable. Since we
are studying families of translates of a convex set K, it is convenient to use the set K to define
distance in the plane. We then have the following: For a A > 0, we define a AK-strip in the
direction D to be a 7-strip in the direction D. where 7 is the length of the orthogonal projection
of K on a line which is orthogonal to the direction D.

Let A, B, and C, be translates of a compact convex set K in the plane. Further, assume
that A, B, and C have a unique transversal and that the triple is 2K-separable. Let the critical
transversal [ define the horizontal direction, and assume that A lies to the left of C. and that
A and C are tangent to [ from below. Then B is tangent to [ from above and meets | between
ANland CNI. Since AK-separability is an affine invariant we may assume that the separation
strips are orthogonal on /.

We now define eight lines that are orthogonal to . Let a; be the line that is tangent to A
from the left, and let ay be the line that is tangent to A from the right. Similarly, let b; be
the line that is tangent to the B from the left, and by be the line that is tangent to B from the
right. Define ¢; and ¢y similarly. Finally, let z; be the line that lies at equal distance from a»
and by, and let z; be the line that lies at equal distance between by and ¢;. Since {4, B,C} is
2K-separable, the strip defined by ay and z; is wider than a 1K-strip. The same applies for the
line pairs {z1,b2}, {b2, 22}, and {z2,¢1}.

For the discussion that follows we will need three additional reference lines. Let m be the
ascending separation line of A and C, let n be the descending separation line of B and C, and let
I' be the parallel of [ that is tangent to B from above. The figure below illustrates the situation
we have described.

Now, assume that a translate X lies above [ and to the right of b, such that {4, B,C, X} is
a disjoint family of translates satisfying 7'(3). Note that we can always enlarge the translates a
bit, then move them slightly, such that we can assume that a translate lying above [ always lies
either to the right of b; or to the left of bs. Now, X must meet m. For if X lies above m, then
{A,C, X} cannot have a transversal, and if X lies below m, it must lie to the right of ¢, and
thus {B,C, X} is totally separable in the order ..B..C..X.. But since X lies above [, {B,C, X}
cannot have a common transversal. Thus m is a transversal for {A,C, X}. Further, we must
have one of the following GPs: (BCX), (BXC) and (XBC). (BCX) is excluded since X lies
above [. And if we have (X BC), X must meet n after n has left B, when we traverse n upward.
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But since {4, B, C'} is 2K-separable, it is impossible for X to meet m such that we have (ACX),
and meet n such that we have (XBC). Thus, we must have (BXC), and X must meet the
boundary of conv(BUC) \ (BUC). Finally, note that X must meet either ¢; or ¢, for if X lies
to the left of ¢;, X cannot meet m, and if X lies to the right of ¢,. X cannot meet conv(BUC).

We shall now show that there can lie at most two translates above [ and to the right of b;.
Assume there are three translates X, Y, and Z, that lie above [ and to the right of b;, such
that {A,B,C,X,Y,Z} is a family of disjoint translates that satisfies T(3). Note that each of
the translates must meet the segment conv({l'’ N n,l' Nm}). For each of the translates X, Y,
and Z. we mark off a point where the translate intersects the segment conv({l' N n,l' " m}),
such that each of these points represents one of the translates. Since the translates are disjoint,
a single point cannot represent two of the translates, and the order in which the points lie,
corresponds to the GP induced by I’ Without loss of generality, we can assume that we meet
the translates in the order ..X..Y..Z.. when we traverse !’ from left to right. Further, we have
seen that each of the translates X, Y, and Z, must meet the upper segment of the boundary
of conv(BUC) \ (BUC), and the line m. Mark off, as above, points on the upper segment
of the boundary of conv(B U C) \ (B UC), and on the segment of m that lies above [ and
below I'. It is then easily verified that m must induce (ACXY Z), and the upper segment of the
boundary of conv(BUC) \ (BUC) must induce (BXY ZC). If the points lie in any other order
the translates cannot be disjoint. This can be seen by observing that the segments between the
points representing the different translates will cross. An example of this is illustrated in the
figure below.

m

= ~

7y
"y upper segment
of conv(BlJC)

The two G Ps that are induced contain the following sub-permutations: (CXY Z) and (XY ZC).
These are incompatible, and therefore there can exist at most two translates above [ and to the
right of b;. By symmetry, there can lie at most two translates above [ and to the left of bs.

A similar argument shows that there can exist at most two translates below [. Thus, a family
that contains a critical triple that is 2K-separable satisfies T — 6. This, however, can be further
reduced. To see this, assume X and Y are translates that lie above [, such that X lies to the left
of by and Y lies to the right of by. It follows from what we proved earlier that X must lie to the
left of z; and Y must lie to the right of z,. If Z is a translate that lies below [, it is can easily
be seen that Z must meet b; or by, and in particular Z is contained in the open strip defined
by z; and zo. Thus, {X,Y,Z} is totally separable with separation order ..X..Z..Y.. But since [
properly separates Z from X and Y, {X,Y, Z} cannot admit a common transversal. Thus there
are at most four translates that do not meet I; if four, then either four that lie above [, or two
that lie above [ and two that lie below [.

This shows that the construction of theorem 6.2 cannot be extended in the sense of having
T — 5, but not T — 4. This follows from the fact that the critical triple {B’, C'E} can be chosen
to be a 2K -separable triple.

The condition of the 2K-separable critical triple may seem somewhat stringent; it is intended
only to show that there exists a sufficient condition. The conclusion is the following: There exists
a Ao < 2 such that if F contains a critical triple that is \oK -separable, then TS == Td= 4.
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