662 research outputs found

    Current-voltage characteristics of the two-dimensional XY model with Monte Carlo dynamics

    Full text link
    Current-voltage characteristics and the linear resistance of the two-dimensional XY model with and without external uniform current driving are studied by Monte Carlo simulations. We apply the standard finite-size scaling analysis to get the dynamic critical exponent zz at various temperatures. From the comparison with the resistively-shunted junction dynamics, it is concluded that zz is universal in the sense that it does not depend on details of dynamics. This comparison also leads to the quantification of the time in the Monte Carlo dynamic simulation.Comment: 5 pages in two columns including 5 figures, to appear in PR

    Extending the usefulness of the verbal memory test: The promise of machine learning

    Get PDF
    The evaluation of verbal memory is a core component of neuropsychological assessment in a wide range of clinical and research settings. Leveraging story recall to assay neurocognitive function could be made more useful if it were possible to administer frequently (i.e., would allow for the collection of more patient data over time) and automatically assess the recalls with machine learning methods. In the present study, we evaluated a novel story recall test with 24 parallel forms that was deployed using smart devices in 94 psychiatric inpatients and 80 nonpatient adults. Machine learning and vector-based natural language processing methods were employed to automate test scoring, and performance using these methods was evaluated in their incremental validity, criterion validity (i.e., convergence with trained human raters), and parallel forms reliability. Our results suggest moderate to high consistency across the parallel forms, high convergence with human raters (r values ~ 0.89), and high incremental validity for discriminating between groups. While much work remains, the present findings are critical for implementing an automated, neuropsychological test deployable using remote technologies across multiple and frequent administrations

    Apparent mass of small children: Experimental measurements

    Get PDF
    A test facility and protocol were developed for measuring the seated, vertical, whole-body vibration response of small children of less than 18 kg in mass over the frequency range from 1 to 45 Hz. The facility and protocol adhered to the human vibration testing guidelines of BS7085 and to current codes of ethics for research involving children. Additional procedures were also developed which are not currently defined in the guidelines, including the integral involvement of the parents and steps taken to maximize child happiness. Eight children were tested at amplitudes of 0.8 and 1.2 m/s2 using band-limited, Gaussian, white noise acceleration signals defined over the frequency interval from 1 to 50 Hz. Driving point apparent mass modulus and phase curves were determined for all eight children at both test amplitudes. All results presented a single, principal, anti-resonance, and were similar to data reported for primates and for adult humans seated in an automotive posture which provided backrest support. The mean frequency of the apparent mass peak was 6.25 Hz for the small children, as compared to values between 6.5 - 8.5 Hz for small primates and values between 6.5 - 8.6 Hz for adults seated with backrest support. The peak value of the mean, normalized, apparent mass was 1.54 for the children, which compares to values from 1.19 to 1.45 reported in the literature for small primates and 1.28 for adults seated with backrest support. ISO standard 5982, which specifies a mean, normalized, apparent mass modulus peak of 1.50 at a frequency of 4.0 Hz for adults seated without backrest support, provides significant differences

    Phase 1b/2a trial of the superoxide dismutase mimetic GC4419 to reduce chemoradiotherapy-induced oral mucositis in patients with oral cavity or oropharyngeal carcinoma

    Get PDF
    PURPOSE: To assess the safety of the superoxide dismutase mimetic GC4419 in combination with radiation and concurrent cisplatin for patients with oral cavity or oropharyngeal cancer (OCC) and to assess the potential of GC4419 to reduce severe oral mucositis (OM). PATIENTS AND METHODS: Patients with locally advanced OCC treated with definitive or postoperative intensity modulated radiation therapy (IMRT) plus cisplatin received GC4419 by 60-minute intravenous infusion, ending \u3c60 minutes before IMRT, Monday through Friday for 3 to 7 weeks, in a dose and duration escalation study. Oral mucositis was assessed twice weekly during and weekly after IMRT. RESULTS: A total of 46 patients received GC4419 in 11 separate dosing and duration cohorts: dose escalation occurred in 5 cohorts receiving 15 to 112 mg/d over 3 weeks (n=20), duration escalation in 3 cohorts receiving 112 mg/d over 4 to 6 weeks (n=12), and then 3 additional cohorts receiving 30 or 90 mg/d over 6 to 7 weeks (n=14). A maximum tolerated dose was not reached. One dose-limiting toxicity (grade 3 gastroenteritis and vomiting with hyponatremia) occurred in each of 2 separate cohorts at 112 mg. Nausea/vomiting and facial paresthesia during infusion seemed to be GC4419 dose-related. Severe OM occurred through 60 Gy in 4 of 14 patients (29%) dosed for 6 to 7 weeks, with median duration of only 2.5 days. CONCLUSIONS: The safety of GC4419 concurrently with chemoradiation for OCC was acceptable. Toxicities included nausea/vomiting and paresthesia. Doses of 30 and 90 mg/d administered for 7 weeks were selected for further study. In an exploratory analysis, severe OM seemed less frequent and briefer than expected

    Towards a temporospatial framework for measurements of disorganization in speech using semantic vectors

    Get PDF
    Incoherent speech in schizophrenia has long been described as the mind making “leaps” of large distances between thoughts and ideas. Such a view seems intuitive, and for almost two decades, attempts to operationalize these conceptual “leaps” in spoken word meanings have used language-based embedding spaces. An embedding space represents meaning of words as numerical vectors where a greater proximity between word vectors represents more shared meaning. However, there are limitations with word vector-based operationalizations of coherence which can limit their appeal and utility in clinical practice. First, the use of esoteric word embeddings can be conceptually hard to grasp, and this is complicated by several different operationalizations of incoherent speech. This problem can be overcome by a better visualization of methods. Second, temporal information from the act of speaking has been largely neglected since models have been built using written text, yet speech is spoken in real time. This issue can be resolved by leveraging time stamped transcripts of speech. Third, contextual information - namely the situation of where something is spoken - has often only been inferred and never explicitly modeled. Addressing this situational issue opens up new possibilities for models with increased temporal resolution and contextual relevance. In this paper, direct visualizations of semantic distances are used to enable the inspection of examples of incoherent speech. Some common operationalizations of incoherence are illustrated, and suggestions are made for how temporal and spatial contextual information can be integrated in future implementations of measures of incoherence

    Reflections on the nature of measurement in language-based automated assessments of patients' mental state and cognitive function

    Get PDF
    Modern advances in computational language processing methods have enabled new approaches to the measurement of mental processes. However, the field has primarily focused on model accuracy in predicting performance on a task or a diagnostic category. Instead the field should be more focused on determining which computational analyses align best with the targeted neurocognitive/psychological functions that we want to assess. In this paper we reflect on two decades of experience with the application of language-based assessment to patients' mental state and cognitive function by addressing the questions of what we are measuring, how it should be measured and why we are measuring the phenomena. We address the questions by advocating for a principled framework for aligning computational models to the constructs being assessed and the tasks being used, as well as defining how those constructs relate to patient clinical states. We further examine the assumptions that go into the computational models and the effects that model design decisions may have on the accuracy, bias and generalizability of models for assessing clinical states. Finally, we describe how this principled approach can further the goal of transitioning language-based computational assessments to part of clinical practice while gaining the trust of critical stakeholders

    Reflections on the nature of measurement in language-based automated assessments of patients' mental state and cognitive function

    Get PDF
    Modern advances in computational language processing methods have enabled new approaches to the measurement of mental processes. However, the field has primarily focused on model accuracy in predicting performance on a task or a diagnostic category. Instead the field should be more focused on determining which computational analyses align best with the targeted neurocognitive/psychological functions that we want to assess. In this paper we reflect on two decades of experience with the application of language-based assessment to patients' mental state and cognitive function by addressing the questions of what we are measuring, how it should be measured and why we are measuring the phenomena. We address the questions by advocating for a principled framework for aligning computational models to the constructs being assessed and the tasks being used, as well as defining how those constructs relate to patient clinical states. We further examine the assumptions that go into the computational models and the effects that model design decisions may have on the accuracy, bias and generalizability of models for assessing clinical states. Finally, we describe how this principled approach can further the goal of transitioning language-based computational assessments to part of clinical practice while gaining the trust of critical stakeholders

    Magnetic-field dependence of dynamical vortex response in two-dimensional Josephson junction arrays and superconducting films

    Full text link
    The dynamical vortex response of a two-dimensional array of the resistively shunted Josephson junctions in a perpendicular magnetic field is inferred from simulations. It is found that, as the magnetic field is increased at a fixed temperature, the response crosses over from normal to anomalous, and that this crossover can be characterized by a single dimensionless parameter. It is described how this crossover should be reflected in measurements of the complex impedance for Josephson junction arrays and superconducting films.Comment: 4 pages including 5 figures in two columns, final versio

    Charge Transport in the Dense Two-Dimensional Coulomb Gas

    Full text link
    The dynamics of a globally neutral system of diffusing Coulomb charges in two dimensions, driven by an applied electric field, is studied in a wide temperature range around the Berezinskii-Kosterlitz-Thouless transition. I argue that the commonly accepted ``free particle drift'' mechanism of charge transport in this system is limited to relatively low particle densities. For higher densities, I propose a modified picture involving collective ``partner transfer'' between bound pairs. The new picture provides a natural explanation for recent experimental and numerical findings which deviate from standard theory. It also clarifies the origin of dynamical scaling in this context.Comment: 4 pages, RevTeX, 2 eps figures included; some typos corrected, final version to be published in Phys. Rev. Let
    • 

    corecore