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A B S T R A C T   

The evaluation of verbal memory is a core component of neuropsychological assessment in a wide range of 
clinical and research settings. Leveraging story recall to assay neurocognitive function could be made more useful 
if it were possible to administer frequently (i.e., would allow for the collection of more patient data over time) 
and automatically assess the recalls with machine learning methods. In the present study, we evaluated a novel 
story recall test with 24 parallel forms that was deployed using smart devices in 94 psychiatric inpatients and 80 
nonpatient adults. Machine learning and vector-based natural language processing methods were employed to 
automate test scoring, and performance using these methods was evaluated in their incremental validity, cri
terion validity (i.e., convergence with trained human raters), and parallel forms reliability. Our results suggest 
moderate to high consistency across the parallel forms, high convergence with human raters (r values ~ 0.89), 
and high incremental validity for discriminating between groups. While much work remains, the present findings 
are critical for implementing an automated, neuropsychological test deployable using remote technologies across 
multiple and frequent administrations.   

1. Introduction 

Neuropsychological functioning is typically assessed in a profes
sional setting during a dyadic exchange between a patient and a psy
chometrician. For this reason, neuropsychological assessment requires 
considerable resources on the part of the patient and the professional, 
and is not optimized for repeated administration within an individual 
over time (see McCaffrey and Westervelt, 1995; Ruff, 2003). Recent 
advances in technology are making it possible to monitor psychiatric 
states frequently in a remote manner, transforming how health infor
mation is generated (Ben-Zeev et al., 2015; Torous and Baker, 2016; 
Holmlund et al., 2019a; Chandler et al., 2019; Cohen et al. 2020a; for a 
review see Tal & Torous, 2017). The present study is part of a larger 
program to increase the value of monitoring spoken communication 
consensually through digital channels (Cohen et al., 2019; Holmlund 
et al., 2019a; Chandler et al., 2020c). The goal of this work is to 
objectively quantify speech with natural language processing (NLP) and 

machine learning techniques in order to provide accurate indicators of 
cognitive and mental health with applications in neurology, psychiatry, 
and behavioral assessment (Cohen et al., 2019; Holmlund et al., 2019a; 
Chandler et al., 2020c). The present project examined the use of a novel 
verbal memory test (story recall) that enables automated, remote, and 
frequent administration. 

1.2. An evolving field 

Verbal episodic memory has traditionally been assessed by partici
pants learning prose passages and then subsequently recalling the stor
ies. Scores are given by counting the number of units of information 
recollected as in the popular Logical Memory prose recall task of the 
Wechsler Memory test (now in its seventh decade and fourth revision - 
Wechsler, 1945, 1987, 1997, 2009). These story units must be recol
lected with specific predefined verbiage and is scored using a 25 point 
rubric, with a single point given to each story unit recalled verbatim. 
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Many times patients recall a story with small additions, deletions, and 
substitutions, while still recollecting the gist. More recent versions of the 
Wechsler Memory test account for thematic units where patient recalls 
are judged for accurately recalling the theme, in addition to recalling 
exact story units. This measure allows for points to be given to the recalls 
of patients who correctly remember the gist of the story, but use the 
wrong verbiage. However, Dunn et al. (2002) contend that the thematic 
units add no additional information as they are merely a subset of the 
original story units. 

Computational approaches to model language features in story recall 
tasks allow us to move beyond simple counting of the amount of items 
recalled and enable a more nuanced approach to the analysis of what is 
actually recalled (Rosenstein et al., 2014; Lautenschlager et al., 2006). 
NLP allows the language spoken by patients to be analyzed in multiple 
ways: at a word-level, structurally, and semantically. Word level char
acteristics of language include measures such as simple counts of words, 
parts of speech, phrases, and words related to cognitive and affective 
processes (Pennebaker et al., 2015; Prud’hommeaux and Roark, 2011). 
Structural characteristics, such as n-grams, sentence parses, and cohe
sion, measure how well language is "put together", allowing for char
acterization of syntactic structures and flow fluency of expression. 
Semantic characteristics, often modeled using word embeddings 
(Mikolov et al., 2013; Pennington et al., 2014; Peters et al., 2018; Devlin 
et al., 2018; Brown et al., 2020), are able to encode the underlying 
meaning of words, sentences, or whole passages in order to judge the 
appropriateness of the meaning expressed. Furthermore, mobile tech
nology affords for remote data collection, self-administration, and im
mediate analysis of the patient responses (Chandler et al., 2019; 
Holmlund et al., 2020; Chandler et al., 2020c). 

Our approach to memory assessment is not simply digitalization of 
current methods (as is standard practice in the psychometric assessment 
industry), but allows for a completely novel method of assessment de
livery and scoring. This radically different approach affords the poten
tial for a full response processing pipeline that in principle enables more 
sensitive assessment (i.e., a more comprehensive and full-spectrum 
analysis of responses allows for a nuanced approach to modeling 
speech, semantics, and syntax). Such a framework starts with data 
collection on a mobile platform outside of the traditional laboratory or 
clinical setting, then to automated speech recognition transcription of 
patient speech, and finally to automated ratings of task completion. 
With such a framework, and as normative databases grow, these tech
niques will enable us to address issues of specificity. Furthermore, they 
will allow for more regular monitoring than current methods which, 
because there are a limited number of stories, can be maximally 
administered a couple of times a year, and enable automated remote 
assessments (Chandler et al., 2020c) thus potentially enhancing access 
and equity in healthcare. The present project examined preliminary 
psychometric characteristics of this test, administered to separate pa
tient and nonpatient populations. 

2. Methods 

2.1. Participants 

For the purpose of automatically assessing verbal memory in a 
population of 94 stable patients with mental illness recruited from an 
inpatient substance use treatment program, as well as 80 presumed 
healthy nonpatients recruited from a university, 24 verbal memory 
stories were generated. The patients had various diagnoses: substance 
abuse disorder (N = 34), depression (N = 31), anxiety disorder (N = 12), 
mood disorder (N = 6), bipolar disorder (N = 5), schizophrenia (N = 3), 
and post-traumatic stress disorder (N = 3). The mean age of the pre
sumed healthy nonpatients was 19.85 (std = 1.96, min = 18, max = 27) 
and for the patients was 37.18 (std = 10.72, min = 19, max = 69). 
Nineteen of the presumed healthy nonpatients were male and 61 were 
female while all of the patients were male. Of the presumed healthy 

nonpatients, 59 were Caucasian, 11 were African-American, 4 were 
Asian-American, 4 were multi-racial, and 2 were other: not American. Of 
the patients, 51 were African-American, 39 were Caucasian, 3 were 
listed as N/A, and 1 was American Indian. 

2.2. Story creation and rating 

Each story in this study was developed to be structurally similar to 
the Logical Memory subtest of the Wechsler Memory Scale-R and 
Wechsler Memory Scale-III, which currently have two alternate test 
forms each, with one being nearly identical between the two sets (WMS- 
R, Wechsler, 1987; WMS-III, Wechsler, 2009). Thus in our analyses, we 
conflate the two nearly identical versions and compare our own story 
versions with the three WMS variations. Variations of our verbal mem
ory tasks were presented over multiple sessions to the same participant 
in a spoken format via a smart device application developed to remotely 
administer neuropsychological tasks to its users (the delta Mental State 
Examination or dMSE; see Holmlund et al., 2019a and Chandler et al., 
2020c for more details of the dMSE application). NLP techniques were 
applied to the recalls (both immediate recalls and recalls prompted a day 
after administration) to automatically generate predictions of expert 
human assessments. 

The stories we created contained two characters, a setting, a prob
lem, and a resolution. Our stories ranged from 68 to 82 words in length, 
whereas the original WMS stories ranged from 65 to 86 words. This 
property, as well as additional properties of the stories such as average 
words per sentence and number of sentences, as compared to the three 
WMS stories, are depicted graphically in Fig. 1 (see Appendix A for the 
data in table format with other properties). It is shown that the three 
WMS stories have a wider range in terms of their structural properties. 
The original WMS stories had a larger variation in the number of words 
used as compared to our original stories and notably had longer sen
tences. Furthermore, the original WMS stories tend to be Americentric, 
naming American cities and colloquialisms from American English. The 
creation of less ethnocentric stories will allow for the task to be more 
generalizable and thus be used in various locations with diverse 
populations. 

The WMS story recalls are traditionally scored on a 25 point scale, 
with one point given for each predefined story unit recalled. Of impor
tance is the requirement that the participants must recall these story 
units with exact or nearly exact verbiage. Scoring is a nuanced and time 
consuming process for clinicians. While this traditional method of 
scoring can be easily digitized by machines with simple pattern 
matching between rubrics and transcribed speech, this process is 
nevertheless unable to capture the continuous nature of semantics. Thus, 
we decided to move away from the 25 point exact matching rubric and 
instead created a simple 6 point rubric for scoring story recalls. A score 
of 1 indicated no details were recalled, and 6 indicated all major and 
almost all minor concepts and themes were recalled. Three trained 
human raters with clinical experience assigned scores on the general 
quality and amount of concepts and themes recalled, including charac
ters, events, dates, descriptors, and feelings. Of the total 823 responses 
collected, a subset (N = 326) was rated by two raters to verify inter-rater 
reliability (r = 0.87). This high agreement suggests that the rubric was 
reliable and thus appropriate for use in training a machine learning 
model. 

2.3. Natural language processing techniques 

The typical process of counting overlapping story units can be triv
ially automated with pattern matching. This is the use of regular ex
pressions, or sequences of characters, that define a search pattern with 
which we compare to a text passage to find matching segments (e.g., 
searching the string “Hello, world” for the pattern “He” will result in a 
match on the first word, but searching it for “and” will result in no 
matches). We propose that enriching this technique with vector-based 
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NLP methods will allow for more fine-grained and nuanced assays of 
remembrance scores. 

In the scoring of the verbal memory test, we have previously pro
posed the use of machine learning regression models trained on (1) the 
number of unique words spoken, (2) the number of common words 
between the original story and the recall, and (3) the word mover’s 
distance between the original story and the recall (Chandler et al. 2019; 
Holmlund et al. 2020). The vector-based word mover’s distance was our 
most highly correlated feature. The metric generates a mapping from 
each word embedding (a vector representation of a particular word; 
further discussed in the next paragraph) in one document to its closest 
counterpart in another document and the resulting distance is calculated 
as the sum of all Euclidean distances between matched word embed
dings. When used in a machine learning regression model, these three 
features correlate with expert raters’ 6 point rating scale with a Pearson 
r of 0.88. Thus, we have previously concluded that the verbal memory 
test can be sufficiently automated and that it holds much potential for 
real world applications (Chandler et al. 2019; Holmlund et al. 2020). 

The use of word embeddings is especially important here because 
they are continuous vector space representations of language, calculated 
by the likelihood of certain words appearing close to one another in 
typical language. Typical language can be defined as the language found 
in Wikipedia, on the internet, or other large corpora such as books or 
movie transcripts. Semantics is continuous (Turney and Pantel, 2010) 
and vector-based analyses of language are able to capture the degree to 
which certain words are similar to others. The verbal memory test re
quires participants to remember salient words from the original story in 
their recall, yet this sort of task is rarely performed verbatim. Unfortu
nately, the traditional rating rubric that includes 25 binary yes/no units 
to count overlapping words does not capture the continuous nature of 
language. To further illustrate this point, we introduce a new feature for 
our regression models that alone is correlated r = 0.86 with expert 
ratings of immediate and delayed recalls: BERTScore (Zhang et al., 
2020). The transformer-based contextual word embedding model, BERT 
(Devlin et al., 2018), has resulted in major improvements in many state 
of the art approaches to NLP tasks. BERTScore is an adaptation of BERT 
that is trained to compute an evaluation metric for text generation. 
Similar to other approaches, the metric computes a similarity measure of 
each token in a candidate sentence with one in a reference sentence, 
greedily chosen as the one with the highest similarity score. BERTScore 
is a relevant feature for story recall scoring because it adapts a state of 
the art NLP tool to compute the most accurate andcontinuous assay of 
similarity between an original story and its recall. 

Specifically, the NLP implementation of comparing word embedding 
representations computes a cosine similarity between two word 
embedding vectors by subtracting the cosine distance between the two 
vectors from 1. In other words, two embeddings that are close in se
mantic space (i.e., similar or synonymous words) will have an angle or 
cosine distance close to 0, so their cosine similarity will be close to 1 since 
1 minus ~0 is ~1. Conversely, the further the words are in semantic 
space (i.e., less similar), the closer their cosine similarity is to 0. As 

compared to this NLP implementation, where cosine similarity is on a 
continuous scale of 0 to 1, a binary manner of point allocation will not 
provide such a precise metric of amount recalled. 

The following is an example of recall scoring in the traditional 
manner versus the vector-based NLP approach. An original variation of 
the WMS stories depicts a woman who is “employed as a cook”. The 
traditional scoring rubric states that the recall must state this phrase 
verbatim or use any variation of the word “cook”, such as “the woman 
cooked”, but no points are given if the response mentions that the 
woman “is a chef”, “works in a kitchen”, or any other similar, yet non- 
verbatim, variation. Likewise, she works in a “cafeteria”, yet the 
scoring rubric does not allow for synonyms such as “dining hall” or 
“lunchroom”. Reciting “dining hall” in place of “cafeteria”, for example, 
is less correct as it is not verbatim, but not entirely incorrect and this 
should be captured in the scoring metric. Fig. 2 shows how the cosine 
similarity between word embedding vectors captures semantics in a 
more precise manner as opposed to exact matching. We first show how 
BERT is able to capture that “works in a kitchen” and “is a chef” are fairly 
synonymous with “employed as a cook”, but that “works as a janitor” is 
less so (which is the desired result as it is not synonymous). The tradi
tional rubric would give all three of these variations a score of 0 even 
though their level of similarity is more continuous than a score of 
0 would entail. We also show that BERT captures how extremely similar 
“dining hall” and “lunchroom” are to “cafeteria”, and how “garage” is 
less similar, yet the traditional rubric would again assign 0 points to each 
of these phrases. 

2.4. Analytic approach 

Chapman and Chapman (1973) discussed the importance of dis
criminability when comparing scores from different classic psychomet
ric tests. When comparing tests of the same format and mode of scoring, 
such as parallel forms of the verbal memory test, the Chapmans defined 
the discriminating power of a test as a function of average, spread, and 
covariance of item difficulty, as well as number of items. Furthermore, 
validation techniques such as exactly matching linguistic characteristics, 
testing on thousands of people, and controlling for representative par
ticipants are traditionally used (Schnabel, 2012). With computational 
approaches this is no longer critical, but there must be minimum re
quirements met for these stories to be viable. Thus, we take these ap
proaches further with the inclusion of additional features. Whereas our 
previous work (Chandler et al. 2019; Holmlund et al. 2020) showed a 
principled way to automatically assess verbal memory, we now discuss 
the lessons learned concerning the suitability of each generated test 
variation in an automated clinical assessment setting. We evaluate three 
aspects of this test: 1) incremental validity (Section 3.1) - the degree to 
which multiple administrations provide improved explanatory power 
for differentiating between groups, 2) criterion validity (Section 3.2) - 
the degree to which our machine learning model predictions converge 
with expert human judgement of amount recalled across both patients 
and nonpatients, and 3) parallel forms reliability (Section 3.3) - the 

Fig. 1. Box plots of three structural properties of the dMSE story variations, as compared to the WMS story variations. From left to right, we show the number of 
words per story, the average number of words per sentence per story, and the number of sentences per story. Exact numbers and more properties are given 
in Appendix A. 
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degree to which reliable predictions of performance quartile are 
consistent over testing time of nonpatient individuals. 

3. Results 

3.1. Incremental validity: frequent administration entails a more accurate 
patient representation 

We built a classification model of group membership (patient vs 
nonpatient) that was based on the same NLP features as our human 
rating regression model (see Chandler et al., 2019 for more classification 
model details). We limit our dataset to the 131 participants (53 patients 
and 78 nonpatients) who provided 4 or more responses to 4 or more 
story variations (i.e., interacted with the dMSE application on 4 or more 
separate occasions). We deemed this manner of selecting data as the 
most optimal amount to get the best possible ranking; there were not too 
few data points that the results would not show a trend and likewise 
there were not too many that we would miss a large subset of our data 
with such a restriction. In Table 1, we show that when starting with 
models trained and tested on 4 response samples from each participant, 
the overall classification accuracy is 83.2% (AUC = 0.857), and that 
each time a single response is removed from a participant’s own sub
sample, the classification accuracy decreases, with a final overall accu
racy of 74.1% (AUC = 0.782) when considering a single response. As 
might be expected, the results show that measurements from psycho
metric testing are more likely to reflect the underlying cognition that we 
are interested in when performance over multiple parallel forms of a 
task over time are considered. Furthermore, because of this criteria, in 
previous work, all classification was done by aggregating all responses 
over time of a single person rather than classifying based on one 
response only. 

3.2. Criterion validity: high correlation of model predictions to expert 
human ratings 

Accurate automation of psychometric testing is a minimum 
requirement for the use of machine learning methods. In previous work, 
we were able to predict the rating an expert human would assign to 
participants’ recalls by building a logistic regression model using NLP 
features (Chandler et al., 2019; Holmlund et al., 2020). Updating the 
previous models (as described in Section 2.3) with a new feature: 
BERTScore, in place of the word mover’s distance, we have now found 
an average Pearson r correlation of 0.89 with expert human ratings, 
when performing a 10 fold cross-validation1 through recalls of all stor
ies. We found that all story variations performed well with human rating 
prediction in a range of r = 0.82-0.93, which is in line with the 
inter-rater correlation (r = 0.87) in this dataset. Such strong correlations 
with expert ratings are now possible more than ever before with the 
availability of more robust and generalizable word embedding models. 
Previous approaches to modeling language such as latent semantic 
analysis (Landauer et al., 1998) tend to be less universal as they were 
generally trained on smaller datasets with different training objectives 
(such as a matrix factorization in the case of latent semantic analysis) 
and therefore tend to underperform the more recent higher dimensional, 
deep neural network based approaches. The current state of the art in 
machine learning and natural language processing is now sufficiently 
advanced for the realization of these types of models. 

3.3. Parallel forms reliability: reliable predictions in nonpatient 
individuals 

We evaluate parallel reliability as the following: if an individual’s 
performance on the verbal memory test is in the upper quartile of per
formance based on all of their other recalls, then they will also be in the 
upper quartile for the current variation of the task. The same would hold 
for each quartile. Thus, we expect an upward trend in a plot of perfor
mance against quartile. We chose quartiles as our assessment as this 
categorical approach could specifically support clinical decision mak
ing. In many cases it is possible to use the intraclass correlation, but the 
method we illustrate here helps visualize how the performance may 
differ across multiple forms of the assessment. 

We performed this experiment on each story variation and found 
consistency in some stories but not others. For instance, in Fig. 3, plots a) 
and b) correspond to the results of a particular story, the CLOSED 

Fig. 2. Graphical representation of two word 
embedding comparison settings. The first, on 
the left, is comparing “employed as a cook” to 
“works in a kitchen”, “is a chef”, and “works as 
a janitor”. The BERT cosine similarities are 
0.867, 0.862, and 0.683, respectively. The sec
ond, on the right, is comparing “cafeteria”, with 
“dining hall”, “lunchroom”, and “garage”. The 
BERT cosine similarities are 0.959, 0.956, and 
0.886, respectively. Both scenarios portray a 
continuous spectrum of semantic similarity. 
The traditional WMS scoring rubric, on the 
other hand, would give all three variations a 
score of 0 points in each scenario.   

Table 1 
Overall classification accuracy and area under the curve (AUC), patient accuracy 
(i.e., sensitivity: the ability of the model to correctly classify a patient from the 
pool of actual patients), and nonpatient accuracy (i.e., specificity: the ability of 
the model to correctly classify a person as nonpatient from the pool of non
patient participants) when the model is trained and tested on 1 response from a 
person, 2 responses from a person, 3 responses from a person, and 4 responses 
from a person. As more recall responses are added to the classification model for 
a single participant, the ability to accurately classify each participant improves.  

# stories 
administered 

AUC Overall 
accuracy 

Patient 
accuracy 

Nonpatient 
accuracy 

1 0.782 74.1% 67.9% 78.2% 
2 0.832 77.8% 75.5% 79.5% 
3 0.845 80.1% 79.2% 80.8% 
4 0.857 83.2% 81.1% 84.6%  

1 Cross validation is a method of splitting a dataset into partitions to train and 
test on in order to yield the most representative results over the samples. When 
the dataset is split into 10 equal subsamples, it is trained on nine and tested on 
the remaining single subsample. This process is done with each of the 10 splits 
serving as the test set in separate iterations, and then results from the 10 tests 
are averaged. 
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STREET story (see Fig. 3 for actual story), that showed reliable clus
tering. Plots c) and d), on the other hand, correspond to the GIANT 
CLOCK story (see Fig. 3 for actual story) which produced a downward 
trend in the quartile plot in the nonpatient population, and thus less 
reliability (e.g., performance of both patients and nonpatients is highly 
variable). An additional observation from these plots is that the per
formance of the patient population tended to show the floor effect (i.e., 
the measurements generally resulted in consistently low scores), which 
shows why we base story quality on the performance of a nonpatient 
population. 

An intuitive reason for the CLOSED STREET story being more reli
able than the GIANT CLOCK story could be because it is more relatable, 
whether it be from personal experience or in literature, media, and so 
on. The themes of riding a bike and road blocks for parades commonly 
occur in day-to-day life or participants will generally be familiar with 
the concept. The GIANT CLOCK story on the other hand is perhaps less 
relatable, especially given the confusion over what could be interpreted 
as entering a giant clock. 

4. Discussion 

In past work, we have argued that machine learning approaches must 
be explainable, transparent, and generalizable in order to be viable in a 
clinical setting (Chandler et al., 2020b). We also showed in a proof of 
concept study that neuropsychological tasks can be remotely adminis
tered via a smart device, that good quality data can be collected from 
patient application usage, and that various mental state variables can be 
predicted (beyond the straight-forward scoring of tasks) using machine 
learning methods (Chandler et al., 2020c). Now, we emphasize that it is 
essential that researchers clearly define which tests can be used in 

automation in order to produce sufficiently accurate results. This is a 
necessary step to move beyond the proof of concept research stage and 
translate into tools that generate actionable clinical inferences for 
patients. 

Traditional psychometrics are, for the most part, based upon an era 
where behavioral responses by a participant were measured by an 
experimenter who summarized the performance by note taking, check
ing boxes on questionnaires and rubrics, or making a note of the 
response time, but this is rapidly changing as new methods for data 
collection and analysis are emerging. Currently, measurements of 
symptoms and signs of psychiatric disorders are often conflated with the 
underlying disorders themselves, but these limits must be carefully 
avoided in diagnostic assessment (Kendler, 2016). Put differently, when 
clinicians evaluate only the characteristics present in individual scoring 
manuals or, more generally, the items in the Diagnostic and Statistical 
Manual of Mental Disorders (American Psychiatric Association, 2013), 
this leads to an impoverished view of psychopathology. With the rein
vention of traditional diagnostics and monitoring to be suitable for 
automation, we must also reinvent the manner in which measurements 
are gathered and analyzed. It is critical that these new automated met
rics are sensitive enough to enable the measurement of change over 
time, which necessitates new psychometrics (Cohen et al., 2020b). 
Furthermore, as an approach that has humans less ‘in the loop’, we must 
ensure that these new psychometric tests are not only at least of the same 
quality as the traditional human judgment-based testing, but that they 
could potentially move the field beyond this to detect subtleties that 
humans may miss (Topol, 2019; Ardila et al., 2019; Poplin et al., 2018; 
Grove et al., 2000). 

Moving forward, there are numerous other factors that are necessary 
to account for such as collecting data from large samples of the 

Fig. 3. Stories can differ in their ability to separate those who perform well in general from those who do not. ParticiSpants were ranked on the x-axis according to 
their overall performance on other story forms. The y-axis represents how well they performed on the CLOSED STREET (a, b) and GIANT CLOCK stories (c, d), 
represented by a count of common word-types between the retelling of a story and its original prompt. Panel a: On this story, nonpatient participants (N=33) showed 
the expected pattern where high performers had high scores. Panel b: In patients (N=29), the difference between high and low performers was not as obvious, and 
scores were generally lower. Panel c: The GIANT CLOCK story did not reveal differences between high and low performing nonpatient participants (N=21). Panel d: In 
patients (N=32), only the top performers were reliable, while the lower quartiles showed a floor-effect. 
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population across the lifespan, clinical conditions, cultural settings, and 
gender as well as recruiting diverse subgroups for usability testing. Such 
an approach to data collection will allow us to control for differences in 
demographic characteristics that have been shown to manifest in many 
applications of artificial intelligence in psychiatry (Cirillo et al, 2020). 
Specifically, we propose more frequent micro-level measurements (e.g., 
daily verbal memory tests where multiple modes of data are collected) 
rather than sparse macro-level measurements (e.g., an irregularly 
scheduled battery of psychological tests). This means consistent testing 
in small, unobtrusive ways, rather than a large slew of testing done on a 
greater time scale. In the age of big data, many modeling techniques are 
well-suited for this approach. Additionally, multi-modal observations 
tend to produce more accurate predictions of psychiatric variables of 
interest than those of uni-modal nature (Chandler et al., 2020a). Thus, 
we propose testing that is able to generate data of various modalities (e. 
g., vocalization features, language features, touch features, speed fea
tures, and so on; Holmlund et al. 2019b). Such a fine-grained approach 
will establish the necessary population norms to then make incisive 
inferences regarding the specific effects of various clinical parameters 
such as the effects of illness state, severity, medication, and neurobio
logical basis of the presenting or suspected underlying disorder. Natu
rally, this new approach to data collection, task design, and data analysis 
will require a clear road map as to how the new psychometrics will be 

validated, normed, and implemented. This paper offers a first step in this 
direction. 
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Appendix A. Table of structural properties of each of the 24 dMSE story variations and the 3 WMS story variations  

Story N words N characters N sentences Words per sentence Characters per word 

dMSE-1 68 268 4 µ=17.00, σ=2.55  µ=3.94, σ=1.94  
dMSE-2 75 336 6 µ=12.50, σ=5.06  µ=4.48, σ=1.82  
dMSE-3 71 302 6 µ=11.83, σ=3.63  µ=4.25, σ=2.23  
dMSE-4 73 333 6 µ=12.17, σ=6.44  µ=4.56, σ=1.97  
dMSE-5 74 329 6 µ=12.33, σ=3.64  µ=4.45, σ=1.84  
dMSE-6 70 296 5 µ=14.00, σ=6.10  µ=4.23, σ=2.27  
dMSE-7 75 334 6 µ=12.50, σ=3.60  µ=4.45, σ=2.37  
dMSE-8 70 271 6 µ=11.67, σ=2.21  µ=3.87, σ=1.79  
dMSE-9 78 320 6 µ=13.00, σ=3.27  µ=4.10, σ=1.89  
dMSE-10 76 372 7 µ=10.86, σ=4.79  µ=4.89, σ=2.33  
dMSE-11 75 331 8 µ=9.38, σ=6.22  µ=4.41, σ=2.05  
dMSE-12 74 330 6 µ=12.33, σ=4.23  µ=4.46, σ=2.09  
dMSE-13 68 310 5 µ=13.60, σ=2.58  µ=4.56, σ=2.07  
dMSE-14 75 331 6 µ=12.50, σ=2.63  µ=4.41, σ=2.00  
dMSE-15 75 326 6 µ=12.50, σ=1.38  µ=4.35, σ=2.04  
dMSE-16 71 301 5 µ=14.20, σ=3.06  µ=4.24, σ=1.93  
dMSE-17 68 289 4 µ=17.00, σ=3.00  µ=4.25, σ=1.82  
dMSE-18 70 292 5 µ=14.00, σ=6.20  µ=4.17, σ=1.93  
dMSE-19 78 263 6 µ=13.00, σ=5.20  µ=3.37, σ=1.65  
dMSE-20 72 308 5 µ=14.40, σ=7.34  µ=4.28, σ=2.06  
dMSE-21 72 298 6 µ=12.00, σ=4.65  µ=4.14, σ=1.89  
dMSE-22 74 285 6 µ=12.33, σ=4.50  µ=3.85, σ=1.74  
dMSE-23 82 369 7 µ=11.71, σ=4.16  µ=4.5, σ=2.03  
dMSE-24 71 279 5 µ=14.20, σ=2.04  µ=3.93, σ=1.89  
WMS III/R-1 65 278 3 µ=21.67, σ=9.56  µ=4.28, σ=2.14  
WMS III-2 86 371 5 µ=17.20, σ=7.78  µ=4.31, σ=2.40  
WMS R-2 66 305 6 µ=11.00, σ=6.11  µ=4.62, σ=2.26   
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