4,993 research outputs found
The night-sky at the Calar Alto Observatory
We present a characterization of the main properties of the night-sky at the
Calar Alto observatory for the time period between 2004 and 2007. We use
optical spectrophotometric data, photometric calibrated images taken in
moonless observing periods, together with the observing conditions regularly
monitored at the observatory, such as atmospheric extinction and seeing. We
derive, for the first time, the typical moonless night-sky optical spectrum for
the observatory. The spectrum shows a strong contamination by different
pollution lines, in particular from Mercury lines, which contribution to the
sky-brightness in the different bands is of the order of ~0.09 mag, ~0.16 mag
and ~0.10 mag in B, V and R respectively. The zenith-corrected values of the
moonless night-sky surface brightness are 22.39, 22.86, 22.01, 21.36 and 19.25
mag arcsec^-2 in U, B, V, R and I, which indicates that Calar Alto is a
particularly dark site for optical observations up to the I-band. The fraction
of astronomical useful nights at the observatory is ~70%, with a ~30% of
photometric nights. The typical extinction at the observatory is k_V~0.15 mag
in the Winter season, with little dispersion. In summer the extinction has a
wider range of values, although it does not reach the extreme peaks observed at
other sites. The median seeing for the last two years (2005-6) was ~0.90",
being smaller in the Summer (~0.87") than in the Winter (~0.96"). We conclude
in general that after 26 years of operations Calar Alto is still a good
astronomical site, being a natural candidate for future large aperture optical
telescopes.Comment: 16 pages, 5 figures, accepted for publishing in the Publications of
Astronomical Society of the Pacific (PASP
Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension
BACKGROUND: Inflammation is a feature of pulmonary arterial hypertension (PAH), and increased circulating levels of cytokines are reported in patients with PAH. However, to date, no information exists on the significance of elevated cytokines or their potential as biomarkers. We sought to determine the levels of a range of cytokines in PAH and to examine their impact on survival and relationship to hemodynamic indexes.
METHODS AND RESULTS: We measured levels of serum cytokines (tumor necrosis factor-alpha, interferon-gamma and interleukin-1beta, -2, -4, -5, -6, -8, -10, -12p70, and -13) using ELISAs in idiopathic and heritable PAH patients (n=60). Concurrent clinical data included hemodynamics, 6-minute walk distance, and survival time from sampling to death or transplantation. Healthy volunteers served as control subjects (n=21). PAH patients had significantly higher levels of interleukin-1beta, -2, -4, -6, -8, -10, and -12p70 and tumor necrosis factor-alpha compared with healthy control subjects. Kaplan-Meier analysis showed that levels of interleukin-6, 8, 10, and 12p70 predicted survival in patients. For example, 5-year survival with interleukin-6 levels of >9 pg/mL was 30% compared with 63% for patients with levels < or = 9 pg/mL (P=0.008). In this PAH cohort, cytokine levels were superior to traditional markers of prognosis such as 6-minute walk distance and hemodynamics.
CONCLUSIONS: This study illustrates dysregulation of a broad range of inflammatory mediators in idiopathic and familial PAH and demonstrates that cytokine levels have a previously unrecognized impact on patient survival. They may prove to be useful biomarkers and provide insight into the contribution of inflammation in PAH
Serum Fatty Acid Binding Protein 4 (FABP4) Predicts Pre-eclampsia in Women with Type 1 Diabetes
OBJECTIVE
To examine the association between fatty acid binding protein 4 (FABP4) and pre-eclampsia risk in women with type 1 diabetes.
RESEARCH DESIGN AND METHODS
Serum FABP4 was measured in 710 women from the Diabetes and Pre-eclampsia Intervention Trial (DAPIT) in early pregnancy and in the second trimester (median 14 and 26 weeks’ gestation, respectively).
RESULTS
FABP4 was significantly elevated in early pregnancy (geometric mean 15.8 ng/mL [interquartile range 11.6–21.4] vs. 12.7 ng/mL [interquartile range 9.6–17]; P &lt; 0.001) and the second trimester (18.8 ng/mL [interquartile range 13.6–25.8] vs. 14.6 ng/mL [interquartile range 10.8–19.7]; P &lt; 0.001) in women in whom pre-eclampsia later developed. Elevated second-trimester FABP4 level was independently associated with pre-eclampsia (odds ratio 2.87 [95% CI 1.24–6.68], P = 0.03). The addition of FABP4 to established risk factors significantly improved net reclassification improvement at both time points and integrated discrimination improvement in the second trimester.
CONCLUSIONS
Increased second-trimester FABP4 independently predicted pre-eclampsia and significantly improved reclassification and discrimination. FABP4 shows potential as a novel biomarker for pre-eclampsia prediction in women with type 1 diabetes.
</jats:sec
Flexibility within the Heads of Muscle Myosin-2 Molecules
We show that negative-stain electron microscopy and image processing of nucleotide-free (apo) striated muscle myosin-2 subfragment-1 (S1), possessing one light chain or both light chains, is capable of resolving significant amounts of structural detail. The overall appearance of the motor and the lever is similar in rabbit, scallop and chicken S1. Projection matching of class averages of the different S1 types to projection views of two different crystal structures of apo S1 shows that all types most commonly closely resemble the appearance of the scallop S1 structure rather than the methylated chicken S1 structure. Methylation of chicken S1 has no effect on the structure of the molecule at this resolution: it too resembles the scallop S1 crystal structure. The lever is found to vary in its angle of attachment to the motor domain, with a hinge point located in the so-called pliant region between the converter and the essential light chain. The chicken S1 crystal structure lies near one end of the range of flexion observed. The Gaussian spread of angles of flexion suggests that flexibility is driven thermally, from which a torsional spring constant of ~ 23 pN·nm/rad2 is estimated on average for all S1 types, similar to myosin-5. This translates to apparent cantilever-type stiffness at the tip of the lever of 0.37 pN/nm. Because this stiffness is lower than recent estimates from myosin-2 heads attached to actin, we suggest that binding to actin leads to an allosteric stiffening of the motor–lever junction
Density Fluctuation Mediated Superconductivity
We conpare predictions of the mean-field theory of supercnductivity for
metallic systems on the border of a density instability for cubic and
tetragonal lattices. The calculations are based on a parametrisation of an
effective interaction arising from the exchange of density fluctuations and
assume that a single band is relevant for superconductivity. The results show
that for comparable model parameters, desnity fluctuation mediated pairing is
more robust in quasi-two dimensions than in three dimensions, and that the
robustness of pairing increases gradually as one goes from a cubic to a more
and more anisotropic tetragonal structure. We also find that the robustness of
density fluctuation mediated pairing can depend sensitively on the incipient
ordering wavevector. We discuss the similarities and differences between the
mean-field theories of superconductivity for density and magnetically mediated
pairing
Opto-mechanical measurement of micro-trap via nonlinear cavity enhanced Raman scattering spectrum
High-gain resonant nonlinear Raman scattering on trapped cold atoms within a
high-fineness ring optical cavity is simply explained under a nonlinear
opto-mechanical mechanism, and a proposal using it to detect frequency of
micro-trap on atom chip is presented. The enhancement of scattering spectrum is
due to a coherent Raman conversion between two different cavity modes mediated
by collective vibrations of atoms through nonlinear opto-mechanical couplings.
The physical conditions of this technique are roughly estimated on Rubidium
atoms, and a simple quantum analysis as well as a multi-body semiclassical
simulation on this nonlinear Raman process is conducted.Comment: 7 pages, 2 figure
Use of bioengineered human commensal gut bacteria-derived microvesicles for mucosal plague vaccine delivery and immunization
Plague caused by the Gram-negative bacterium, Yersinia pestis, is still endemic in parts of the world today. Protection against pneumonic plague is essential to prevent the development and spread of epidemics. Despite this, there are currently no licensed plague vaccines in the western world. Here we describe the means of delivering biologically active plague vaccine antigens directly to mucosal sites of plague infection using highly stable microvesicles (outer membrane vesicles; OMVs) that are naturally produced by the abundant and harmless human commensal gut bacterium Bacteroides thetaiotaomicron (Bt). Bt was engineered to express major plague protective antigens in its OMVs, specifically Fraction 1 (F1) in the outer membrane and LcrV (V antigen) in the lumen, for targeted delivery to the gastrointestinal (GI) and respiratory tracts in a non-human primate (NHP) host. Our key findings were that Bt OMVs stably expresses F1 and V plague antigens, particularly the V antigen, in the correct, immunogenic form. When delivered intranasally V-OMVs elicited substantive and specific immune and antibody responses, both in the serum [immunoglobulin (Ig)G] and in the upper and lower respiratory tract (IgA); this included the generation of serum antibodies able to kill plague bacteria. Our results also showed that Bt OMV-based vaccines had many desirable characteristics, including: biosafety and an absence of any adverse effects, pathology or gross alteration of resident microbial communities (microbiotas); high stability and thermo-tolerance; needle-free delivery; intrinsic adjuvanticity; the ability to stimulate both humoral and cell-mediated immune responses; and targeting of primary sites of plague infection
Mendelian randomization for studying the effects of perturbing drug targets [version 1; peer review: awaiting peer review]
Drugs whose targets have genetic evidence to support efficacy and safety are more likely to be approved after clinical development. In this paper, we provide an overview of how natural sequence variation in the genes that encode drug targets can be used in Mendelian randomization analyses to offer insight into mechanism-based efficacy and adverse effects. Large databases of summary level genetic association data are increasingly available and can be leveraged to identify and validate variants that serve as proxies for drug target perturbation. As with all empirical research, Mendelian randomization has limitations including genetic confounding, its consideration of lifelong effects, and issues related to heterogeneity across different tissues and populations. When appropriately applied, Mendelian randomization provides a useful empirical framework for using population level data to improve the success rates of the drug development pipeline
Mendelian randomization for studying the effects of perturbing drug targets [version 2; peer review: 3 approved, 1 approved with reservations]
Drugs whose targets have genetic evidence to support efficacy and safety are more likely to be approved after clinical development. In this paper, we provide an overview of how natural sequence variation in the genes that encode drug targets can be used in Mendelian randomization analyses to offer insight into mechanism-based efficacy and adverse effects. Large databases of summary level genetic association data are increasingly available and can be leveraged to identify and validate variants that serve as proxies for drug target perturbation. As with all empirical research, Mendelian randomization has limitations including genetic confounding, its consideration of lifelong effects, and issues related to heterogeneity across different tissues and populations. When appropriately applied, Mendelian randomization provides a useful empirical framework for using population level data to improve the success rates of the drug development pipeline
Changes in serogroup and genotype prevalence among carried meningococci in the United Kingdom during vaccine implementation.
BACKGROUND: Herd immunity is important in the effectiveness of conjugate polysaccharide vaccines against encapsulated bacteria. A large multicenter study investigated the effect of meningococcal serogroup C conjugate vaccine introduction on the meningococcal population. METHODS: Carried meningococci in individuals aged 15-19 years attending education establishments were investigated before and for 2 years after vaccine introduction. Isolates were characterized by multilocus sequence typing, serogroup, and capsular region genotype and changes in phenotypes and genotypes assessed. RESULTS: A total of 8462 meningococci were isolated from 47 765 participants (17.7%). Serogroup prevalence was similar over the 3 years, except for decreases of 80% for serogroup C and 40% for serogroup 29E. Clonal complexes were associated with particular serogroups and their relative proportions fluctuated, with 12 statistically significant changes (6 up, 6 down). The reduction of ST-11 complex serogroup C meningococci was probably due to vaccine introduction. Reasons for a decrease in serogroup 29E ST-254 meningococci (from 1.8% to 0.7%) and an increase in serogroup B ST-213 complex meningococci (from 6.7% to 10.6%) were less clear. CONCLUSIONS: Natural fluctuations in carried meningococcal genotypes and phenotypes a can be affected by the use of conjugate vaccines, and not all of these changes are anticipatable in advance of vaccine introduction
- …