2,771 research outputs found

    Progress in Fabrication of Rocket Combustion Chambers by VPS

    Get PDF
    Several documents in a collection describe aspects of the development of advanced materials and fabrication processes intended to enable the manufacture of advanced rocket combustion chambers and nozzles at relatively low cost. One concept discussed in most of the documents is the fabrication of combustion-chamber liners by vacuum plasma spraying (VPS) of an alloy of 88Cu/8Cr/4Nb (numbers indicate atomic percentages) -- a concept that was reported in "Improved Alloy for Fabrication of Combustion Chambers by VPS" (MFS-26546). Another concept is the deposition of graded-composition wall and liner structures by VPS in order to make liners integral parts of wall structures and to make oxidation- and thermal-protection layers integral parts of liners: The VPS process is started at 100 percent of a first alloy, then the proportion of a second alloy is increased gradually from zero as deposition continues, ending at 100 percent of the second alloy. Yet another concept discussed in one of the documents is the VPS of oxidation-protection coats in the forms of nickel-and-chromium-containing refractory alloys on VPS-deposited 88Cu/8Cr/4Nb liners

    Paper Session I-B - Robust Low Cost Aerospike/RLV Combustion Chamber By Advanced Vacuum Plasma Process

    Get PDF
    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. At the same time, fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of a shrinking NASA budget. In recent years, combustion chambers of equivalent size to the Aerospike chamber have been fabricated at NASA-Marshall Space Flight Center (MSFC) using innovative, relatively low-cost, vacuum-plasma-spray (VPS) techniques (1,2). Typically, such combustion chambers are made of the copper alloy NARloy-Z. However, current research and development conducted by NASA-Lewis Research Center (LeRC) has identified a Cu-8Cr-4Nb alloy which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. In fact, researchers at NASA-LeRC have demonstrated that powder metallurgy (P/M) Cu-8Cr-4Nb exhibits better mechanical properties at 650°C (1200°F) than NARloy-Z does at 538°C (1000°F}. The objective of this program is to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems such as Lockheed-Martin\u27s VentureSta( and NASA\u27s Reusable Launch Vehicle (RLV) using the VPS process. The VPS Cu-8Cr-4Nb had mechanical properties that match or exceed those of P/M Cu-8Cr-4Nb. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the hot wall of the liner during the VPS process, significantly extending the life/performance. Tensile properties of Cu-8Cr-4Nb material produced by VPS are reviewed and compared to material produced previously by extrusion. VPS formed combustion chamber liners have also been prepared and will be reported on, following scheduled hot firing tests at NASA-LeRC

    Paper Session I-A - Robust Low Cost Liquid Rocket Combustion Chamber By Advanced Vacuum Plasma Process

    Get PDF
    Next-generation, regeneratively cooled rocket engines require materials that can meet high temperatures while resisting the corrosive oxidation-reduction reaction of combustion known as blanching, the main cause of engine failure. A project was initiated at NASA-Marshall Space Flight Center (MSFC) to combine three existing technologies to build and demonstrate an advanced liquid rocket engine combustion chamber that would provide a 100-mission life. Technology developed in microgravity research to build cartridges for space furnaces was utilized to vacuum plasma spray (VPS) a functional gradient coating on the hot wall of the combustion liner as one continuous operation, eliminating any bondline between the coating and the liner. (See Figure 1) The coating was NiCrAlY, developed previously as durable protective coatings on space shuttle high-pressure fuel turbopump (HPFTP) turbine blades. A thermal model showed that 0.035” NiCrAlY applied to the hot wall of the combustion liner would reduce the hot wall temperature 200°F, a 20% reduction, for longer life. Cu-8Cr-4Nb alloy, which was developed by NASA-Glenn Research Center (GRC), and which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability, was utilized as the liner material in place of NARloy-Z. The Cu-8Cr-4Nb material exhibits better mechanical properties at 650°C (1200°F) than NARloy-Z does at 538°C (1000°F). VPS formed Cu-8Cr-4Nb combustion chamber liners with a protective NiCrAlY functional gradient coating have been hot fire tested, successfully demonstrating a durable coating for the first time. Hot fire tests along with tensile and low cycle fatigue properties of the VPS formed combustion chamber liners and witness panel specimens are discussed

    Flux of nutrients from Russian rivers to the Arctic Ocean: Can we establish a baseline against which to judge future changes?

    Get PDF
    Climate models predict significant warming in the Arctic in the 21st century, which will impact the functioning of terrestrial and aquatic ecosystems as well as alter land‐ocean interactions in the Arctic. Because river discharge and nutrient flux integrate large‐scale processes, they should be sensitive indicators of change, but detection of future changes requires knowledge of current conditions. Our objective in this paper is to evaluate the current state of affairs with respect to estimating nutrient flux to the Arctic Ocean from Russian rivers. To this end we provide estimates of contemporary (1970s–1990s) nitrate, ammonium, and phosphate fluxes to the Arctic Ocean for 15 large Russian rivers. We rely primarily on the extensive data archives of the former Soviet Union and current Russian Federation and compare these values to other estimates and to model predictions. Large discrepancies exist among the various estimates. These uncertainties must be resolved so that the scientific community will have reliable data with which to calibrate Arctic biogeochemical models and so that we will have a baseline against which to judge future changes (either natural or anthropogenic) in the Arctic watershed

    Enhanced-Contrast Viewing of White-Hot Objects in Furnaces

    Get PDF
    An apparatus denoted a laser image contrast enhancement system (LICES) increases the contrast with which one can view a target glowing with blackbody radiation (a white-hot object) against a background of blackbody radiation in a furnace at a temperature as high as approximately 1,500 C. The apparatus utilizes a combination of narrowband illumination, along with band-pass filtering and polarization filtering to pass illumination reflected by the target while suppressing blackbody light from both the object and its background

    Better VPS Fabrication of Crucibles and Furnace Cartridges

    Get PDF
    An experimental investigation has shown that by (1) vacuum plasma spraying (VPS) of suitable refractory metal alloys on graphite mandrels, and then (2) heat-treating the VPS alloy deposits under suitable conditions, it is possible to fabricate improved crucibles and furnace cartridges that could be used at maximum temperatures between 1,400 and 1,600 C and that could withstand chemical attack by the materials to be heated in the crucibles and cartridges. Taken by itself, the basic concept of fabricating furnace cartridges by VPS of refractory materials onto graphite mandrels is not new; taken by itself, the basic concept of heat treatment of VPS deposits for use as other than furnace cartridges is also not new; however, prior to this investigation, experimental crucibles and furnace cartridges fabricated by VPS had not been heat treated and had been found to be relatively weak and brittle. Accordingly, the investigation was directed toward determining whether certain combinations of (1) refractory alloy compositions, (2) VPS parameters, and (3) heat-treatment parameters could result in VPS-fabricated components with increased ductility

    Quench Crucibles Reinforced with Metal

    Get PDF
    Improved crucibles consisting mainly of metal-reinforced ceramic ampules have been developed for use in experiments in which material specimens are heated in the crucibles to various high temperatures, then quenched by, for example, plunging the crucibles into water at room temperature. In a traditional quench crucible, the gap between the ampule and the metal cartridge impedes the transfer of heat to such a degree that the quench rate (the rate of cooling of the specimen) can be too low to produce the desired effect in the specimen. One can increase the quench rate by eliminating the metal cartridge to enable direct quenching of the ampule, but then the thermal shock of direct quenching causes cracking of the ampule. In a quench crucible of the present improved type, there is no gap and no metal cartridge in the traditional sense. Instead, there is an overlay of metal in direct contact with the ampule, as shown on the right side of the figure. Because there is no gap between the metal overlay and the ampule, the heat-transfer rate can be much greater than it is in a traditional quench crucible. The metal overlay also reinforces the ampule against cracking

    Do Workplace Characteristics Moderate the Effects of Attitudes on Father Warmth and Engagement?

    Get PDF
    ©American Psychological Association, 2020. This paper is not the copy of record and may not exactly replicate the authoritative document published in the APA journal. The final article is available, upon publication, at: https://doi.org/10.1037/fam0000672Though many fathers want to be warmer, more nurturing, and more actively involved than prior generations (i.e., the new fatherhood ideal), they also embrace a father’s traditional role as financial earner. Thus, we hypothesized that fathers’ attitudes about their roles would likely interact with workplace characteristics to produce variations in father warmth and engagement. Using a national sample of 1,020 employed U.S. fathers with children ages 2–8 years old, results suggest that adherence to the new fatherhood ideal was associated with more frequent father engagement and warmth, while endorsing traditional gender norms was associated with less father warmth. Also consistent with prior research showing that family friendly work cultures may enable fathers to be more engaged parents, we find that a family supportive workplace and greater flexibility in when and where fathers work, were associated with more frequent father engagement and warmth. Moreover, interaction results suggest that the associations between job flexibility and engagement are stronger for fathers who do not fully endorse the new fatherhood ideal; associations between workplace support and warmth are also stronger for fathers who do not fully endorse the new fatherhood ideal. Thus, flexibility and a family supportive workplace may particularly enable father involvement for fathers whose attitudes might otherwise be a barrier to their involvement

    Method of fabricating a rocket engine combustion chamber

    Get PDF
    A process for making a combustion chamber for a rocket engine wherein a copper alloy in particle form is injected into a stream of heated carrier gas in plasma form which is then projected onto the inner surface of a hollow metal jacket having the configuration of a rocket engine combustion chamber is described. The particles are in the plasma stream for a sufficient length of time to heat the particles to a temperature such that the particles will flatten and adhere to previously deposited particles but will not spatter or vaporize. After a layer is formed, cooling channels are cut in the layer, then the channels are filled with a temporary filler and another layer of particles is deposited
    corecore