955 research outputs found

    Phase-driven interaction of widely separated nonlinear Schr\"odinger solitons

    Full text link
    We show that, for the 1d cubic NLS equation, widely separated equal amplitude in-phase solitons attract and opposite-phase solitons repel. Our result gives an exact description of the evolution of the two solitons valid until the solitons have moved a distance comparable to the logarithm of the initial separation. Our method does not use the inverse scattering theory and should be applicable to nonintegrable equations with local nonlinearities that support solitons with exponentially decaying tails. The result is presented as a special case of a general framework which also addresses, for example, the dynamics of single solitons subject to external forces

    Fast soliton scattering by attractive delta impurities

    Full text link
    We study the Gross-Pitaevskii equation with an attractive delta function potential and show that in the high velocity limit an incident soliton is split into reflected and transmitted soliton components plus a small amount of dispersion. We give explicit analytic formulas for the reflected and transmitted portions, while the remainder takes the form of an error. Although the existence of a bound state for this potential introduces difficulties not present in the case of a repulsive potential, we show that the proportion of the soliton which is trapped at the origin vanishes in the limit

    Dynamics of soliton-like solutions for slowly varying, generalized gKdV equations: refraction vs. reflection

    Full text link
    In this work we continue the description of soliton-like solutions of some slowly varying, subcritical gKdV equations. In this opportunity we describe, almost completely, the allowed behaviors: either the soliton is refracted, or it is reflected by the potential, depending on its initial energy. This last result describes a new type of soliton-like solution for gKdV equations, also present in the NLS case. Moreover, we prove that the solution is not pure at infinity, unlike the standard gKdV soliton.Comment: 51 pages, submitte

    Scattering for the L2supercritical point NLS

    Get PDF
    We consider the 1D nonlinear Schrödinger equation with focusing point nonlinearity. "Point"means that the pure-power nonlinearity has an inhomogeneous potential and the potential is the delta function supported at the origin. This equation is used to model a Kerr-type medium with a narrow strip in the optic fibre. There are several mathematical studies on this equation and the local/global existence of a solution, blow-up occurrence, and blowup profile have been investigated. In this paper we focus on the asymptotic behavior of the global solution, i.e., we show that the global solution scatters as t → ±∞ in the L2 supercritical case. The main argument we use is due to Kenig-Merle, but it is required to make use of an appropriate function space (not Strichartz space) according to the smoothing properties of the associated integral equation

    On the 2d Zakharov system with L^2 Schr\"odinger data

    Full text link
    We prove local in time well-posedness for the Zakharov system in two space dimensions with large initial data in L^2 x H^{-1/2} x H^{-3/2}. This is the space of optimal regularity in the sense that the data-to-solution map fails to be smooth at the origin for any rougher pair of spaces in the L^2-based Sobolev scale. Moreover, it is a natural space for the Cauchy problem in view of the subsonic limit equation, namely the focusing cubic nonlinear Schroedinger equation. The existence time we obtain depends only upon the corresponding norms of the initial data - a result which is false for the cubic nonlinear Schroedinger equation in dimension two - and it is optimal because Glangetas-Merle's solutions blow up at that time.Comment: 30 pages, 2 figures. Minor revision. Title has been change

    Fast solitons on star graphs

    Full text link
    We define the Schr\"odinger equation with focusing, cubic nonlinearity on one-vertex graphs. We prove global well-posedness in the energy domain and conservation laws for some self-adjoint boundary conditions at the vertex, i.e. Kirchhoff boundary condition and the so called δ\delta and δ′\delta' boundary conditions. Moreover, in the same setting we study the collision of a fast solitary wave with the vertex and we show that it splits in reflected and transmitted components. The outgoing waves preserve a soliton character over a time which depends on the logarithm of the velocity of the ingoing solitary wave. Over the same timescale the reflection and transmission coefficients of the outgoing waves coincide with the corresponding coefficients of the linear problem. In the analysis of the problem we follow ideas borrowed from the seminal paper \cite{[HMZ07]} about scattering of fast solitons by a delta interaction on the line, by Holmer, Marzuola and Zworski; the present paper represents an extension of their work to the case of graphs and, as a byproduct, it shows how to extend the analysis of soliton scattering by other point interactions on the line, interpreted as a degenerate graph.Comment: Sec. 2 revised; several misprints corrected; added references; 32 page

    Study of stability and control moment gyro wobble damping of flexible, spinning space stations

    Get PDF
    An executive summary and an analysis of the results are discussed. A user's guide for the digital computer program that simulates the flexible, spinning space station is presented. Control analysis activities and derivation of dynamic equations of motion and the modal analysis are also cited

    Fast soliton scattering by delta impurities

    Full text link
    We study the Gross-Pitaevskii equation (nonlinear Schroedinger equation) with a repulsive delta function potential. We show that a high velocity incoming soliton is split into a transmitted component and a reflected component. The transmitted mass (L^2 norm squared) is shown to be in good agreement with the quantum transmission rate of the delta function potential. We further show that the transmitted and reflected components resolve into solitons plus dispersive radiation, and quantify the mass and phase of these solitons.Comment: 32 pages, 3 figure

    The public health safety of using human excreta from urine diverting toilets for agriculture: the Philippine experience

    Get PDF
    To determine the safety of using human excreta in agriculture, an observational study was conducted to determine the length of time necessary to eradicate parasitic ova and pathogenic bacteria in human excreta kept in the storage vaults of urine-diverting dehydration toilets in Cagayan de Oro City, Philippines for ten (10) months, from August 2007 to May 2008. The study was conducted using seven (7) urine-diverting toilets. Baseline data for parasite ova and pathogenic bacteria were taken and duly recorded. Results show that microorganisms do not pose a public health threat if human excreta from UDDT vaults are used in agriculture. However, helminth eggs, particularly those of Ascaris lumbricoides, may still be infective and six months may not be sufficient to dehydrate human feces and render them safe for agricultural use. Secondary treatment is strongly recommended to render human excreta safe for agricultural use
    • …
    corecore