17 research outputs found

    Gender differences in the physiological responses and kinematic behaviour of elite sprint cross-country skiers

    Get PDF
    Gender differences in performance by elite endurance athletes, including runners, track cyclists and speed skaters, have been shown to be approximately 12%. The present study was designed to examine gender differences in physiological responses and kinematics associated with sprint cross-country skiing. Eight male and eight female elite sprint cross-country skiers, matched for performance, carried out a submaximal test, a test of maximal aerobic capacity (VO2max) and a shorter test of maximal treadmill speed (Vmax) during treadmill roller skiing utilizing the G3 skating technique. The men attained 17% higher speeds during both the VO2max and the Vmax tests (P < 0.05 in both cases), differences that were reduced to 9% upon normalization for fat-free body mass. Furthermore, the men exhibited 14 and 7% higher VO2max relative to total and fat-free body mass, respectively (P < 0.05 in both cases). The gross efficiency was similar for both gender groups. At the same absolute speed, men employed 11% longer cycles at lower rates, and at peak speed, 21% longer cycle lengths (P < 0.05 in all cases). The current study documents approximately 5% larger gender differences in performance and VO2max than those reported for comparable endurance sports. These differences reflect primarily the higher VO2max and lower percentage of body fat in men, since no gender differences in the ability to convert metabolic rate into work rate and speed were observed. With regards to kinematics, the gender difference in performance was explained by cycle length, not by cycle rate

    Analysis of a sprint ski race and associated laboratory determinants of world-class performance

    Get PDF
    This investigation was designed to analyze the time-trial (STT) in an international cross-country skiing sprint skating competition for (1) overall STT performance and relative contributions of time spent in different sections of terrain, (2) work rate and kinematics on uphill terrain, and (3) relationships to physiological and kinematic parameters while treadmill roller ski skating. Total time and times in nine different sections of terrain by 12 world-class male sprint skiers were determined, along with work rate and kinematics for one specific uphill section. In addition, peak oxygen uptake (VO2peak), gross efficiency (GE), peak speed (Vpeak), and kinematics in skating were measured. Times on the last two uphill and two final flat sections were correlated to overall STT performance (r = ~−0.80, P < 0.001). For the selected uphill section, speed was correlated to cycle length (r = −0.75, P < 0.01) and the estimated work rate was approximately 160% of peak aerobic power. VO2peak, GE, Vpeak, and peak cycle length were all correlated to STT performance (r = ~−0.85, P < 0.001). More specifically, VO2peak and GE were correlated to the last two uphill and two final flat section times, whereas Vpeak and peak cycle length were correlated to times in all uphill, flat, and curved sections except for the initial section (r = ~−0.80, P < 0.01). Performances on uphill and flat terrain in the latter part were the most significant determinants of overall STT performance. Peak oxygen uptake, efficiency, peak speed, and peak cycle length were strongly correlated to overall STT performance, as well as to performance in different sections of the race

    Anticipatory Artificial Autopoiesis

    Full text link
    peer reviewedIn examining relationships between autopoiesis and anticipation in artificial life (Alife) systems it is demonstrated that anticipation may increase efficiency and viability in artificial autopoietic living systems. This paper, firstly, gives a review of the Varela et al [1974] automata algorithm of an autopoietic living cell. Some problems in this algorithm must be corrected. Secondly, a new and original anticipatory artificial autopoiesis algorithm for automata is presented. In our automata system, the asymmetric membrane of the self-creating living cell plays a central role. The simulation confirms the validity of our algorithm in showing its autopoietic properties

    Adaptive and Rational Anticipations in Risk Management Systems and Economy

    Full text link
    peer reviewedThe global financial crisis of year 2009 is explained as a result of uncoordinated risk management decisions in business firms and economic organisations. The underlying reason for this can be found in the current financial system. As the financial market has lost much of its direct coupling to the concrete economy it provides misleading information to economic decision makers at all levels. Hence, the financial system has moved from a state of moderate and slow cyclical fluctuations into a state of fast and chaotic ones. Those misleading decisions can further be described, but not explained, by help of adaptive and rational expectations from macroeconomic theory. In this context, AE, the Adaptive Expectations are related to weak passive Exo-anticipation, and RE, the Rational expectations can be related to a strong, active and design oriented anticipation. The shortcomings of conventional cures, which builds on a reactive paradigm, have already been demonstrated in economic literature and are here further underlined by help of Ashby's “Law of Requisite Variety”, Weaver's distinction between systems of “Disorganized Complexity” and those of “Organized Complexity”, and Klir's “Reconstructability Analysis”. Anticipatory decision-making is hence here proposed as a replacement to current expectation based and passive risk management. An anticipatory model of the business cycle is presented for supporting that proposition. The model, which is an extension of the Kaldor-Kalecki model, includes both retardation and anticipation. While cybernetics with the feedback process in control system deals with an explicit goal or purpose given to a system, the anticipatory system discussed here deals with a behaviour for which the future state of the system is built by the system itself, without explicit goal. A system with weak anticipation is based on a predictive model of the system, while a system with strong anticipation builds its own future by itself. Numerical simulations on computer confirm the feasibility of this approach. Hence, functional differential equations with both retardation and anticipation are found to be useful tools for modelling financial systems

    Anticipatory Mechanisms in Evolutionary Living Systems

    Full text link
    peer reviewedThis paper deals firstly with a revisiting of Darwin's theory of Natural Selection. Darwin in his book never uses the word “evolution”, but shows a clear position about mutability of species. Darwin's Natural Selection was mainly inspired by the anticipatory Artificial Selection by humans in domestication, and the Malthus struggle for existence. Darwin showed that the struggle for existence leads to the preservation of the most divergent offspring of any one species. He cited several times the canon of “Natura non facit saltum”. He spoke about the origin of life from some one primordial form, into which life was first breathed. Finally, Darwin made anticipation about the future researches in psychology. This paper cites the work of Ernst Mayr who was the first, after 90 years of an intense scientific debate, to present a new and stable Darwinian paradigm as the “Evolutionary Synthesis” in 1942. To explain what is life, the Living Systems Theory (LST) by J. G. Miller is presented. It is showed that the Autopoietic Systems Theory of Varela et al is also a fundamental component of living systems. In agreement with Darwin, the natural selection is a necessary condition for transformation of biological systems, but is not a sufficient condition. Thus, in this paper we conjecture that an anticipatory evolutionary mechanism exists with the genetic code that is a self-replicating and self-modifying anticipatory program. As demonstrated by Nobel laureate McClintock, evolution in genomes is programmed. The word “program” comes from “pro-gram” meaning to write before, by anticipation, and means a plan for the programming of a mechanism, or a sequence of coded instructions that can be inserted into a mechanism, or a sequence of coded instructions, as genes of behavioural responses, that is part of an organism. For example, cell death may be programmed by what is called the apoptosis. This definitively is a great breakthrough in our understanding of biological evolution. Hence, it is possible to formulate a new principle of evolution, i.e. the principle of Double Anticipatory Loop (DAL) of evolution: Biological evolution is driven by interaction between a mindless environment that is passively selecting the fittest inhabitants and purposeful anticipatory living systems, which are actively selecting and creating their own environment. Evolution on the genome level is trigged by environmental stress but guided by an inherent program

    Simulacija skupinskega odločitvenega procesa in učenja

    No full text
    The idea of decision analysis – and subsequent learning from the outcomes – is old within Operational Research. Here this approach to continuous improvement of decision outcomes is put one step further within the area of crisis and disaster man­agement. This is done by introducing multiactors making simultaneous decisions with just partial information about each other. Further, decision outcomes are achieved from a simulation model rather than from the real object system.Ideja analize skupinskega odločitvenega procesa in posledično identificiranega učenja ima bogato tradicijo v okviru področja operacijskih raziskav. V prispevku je izveden nov korak v smeri izboljšave rezultatov skupinskih odločitvenih procesov na področju upravljanja v kriznih situacijah. Uvedeno je okolje kjer sodeluje več udeležencev, ki istočasno sprejemajo odločitve na podlagi delnih informacij, ki jih medsebojno izmenjujejo. Člani odločitvene skupine za odločanje uporabljajo simulacijski model, kar ima številne prednosti v primerjavi z delovanjem v realnih sistemih

    Validation of MAP-NET — A network analysis tool

    No full text
    MAP-NET (Measure and Analysis of Personal NETwork) is a computerised instrument for assessment of the personal networks of persons with substance use disorders and related problems, with information on individual, relational and structural levels, designed to give immediate feedback to be used in clinical interviews, and to provide relevant measures for research. The study investigates its validity and reliability, by using a combination of validation strategies including factor analysis and internal consistency of scales, convergent and predictive validity, sensitivity to social desirability and agreement with collateral interviews. The scales demonstrate satisfactory construct validity and acceptable to excellent internal consistency and convergent and predictive validity with relevant other scales. There is low sensitivity to social desirability and other bias. There is substantial agreement with collateral interviews on the most sensitive variables. Thus, MAP-NET has the qualities needed for clinical use and research
    corecore