2,076 research outputs found

    Critical Dynamics of a Vortex Loop Model for the Superconducting Transition

    Full text link
    We calculate analytically the dynamic critical exponent zMCz_{MC} measured in Monte Carlo simulations for a vortex loop model of the superconducting transition, and account for the simulation results. In the weak screening limit, where magnetic fluctuations are neglected, the dynamic exponent is found to be zMC=3/2z_{MC} = 3/2. In the perfect screening limit, zMC=5/2z_{MC} = 5/2. We relate zMCz_{MC} to the actual value of zz observable in experiments and find that z∟2z \sim 2, consistent with some experimental results

    Children Attending Day Care Centers are a Year-round Reservoir of Gastrointestinal Viruses

    Get PDF
    Abstract Viral gastroenteritis causes high morbidity worldwide. In this study, stool samples from 179 children aged 0–6 years attending Danish day care centers were investigated for gastrointestinal viruses. Each child was observed for one year with submission of samples and questionnaires every two months. Adenovirus, norovirus, rotavirus, and sapovirus were detected in samples using real-time PCR. A total of 229 (33%) of the 688 samples collected tested positive for at least one virus. At the first sampling point, adenovirus was shed by 6%, norovirus genotype I by 3% and genotype II by 12%, rotavirus A by 9%, and sapovirus by 21% of the 142 children included in the risk factor analyses. Increasing age was identified as a protective factor against testing positive for gastrointestinal virus, whereas nausea during the previous two months was positively associated with testing positive. Odds of shedding adenovirus were 9.6 times higher among children treated with antibiotics within the previous two months than among children who were not. Gastrointestinal viruses were shed year-round and high viral loads were observed in samples from both symptomatic and asymptomatic children, suggesting children in day care as a reservoir and a possible source of spreading of viruses into the community

    Capsaicin-sensitive cutaneous primary afferents convey electrically induced itch in humans

    Get PDF
    Specially designed transcutaneous electrical stimulation paradigms can be used to provoke experimental itch. However, it is unclear which primary afferent fibers are activated and whether they represent pathophysiologically relevant, C-fiber mediated itch. Since low-threshold mechano-receptors have recently been implicated in pruriception we aimed to characterize the peripheral primary afferent subpopulation conveying electrically evoked itch in humans (50 Hz stimulation, 100 μs square pulses, stimulus-response function to graded stimulus intensity). In 10 healthy male volunteers a placebo-controlled, 24-h 8% topical capsaicin-induced defunctionalization of capsaicin-sensitive (transient receptor potential V1-positive, ‘TRPV1’+) cutaneous fibers was performed. Histaminergic itch (1% solution introduced by a prick test lancet) was provoked as a positive control condition. Capsaicin pretreatment induced profound loss of warmth and heat pain sensitivity (pain threshold and supra-threshold ratings) as assessed by quantitative sensory testing, indicative of efficient TRPV1-fiber defunctionalization (all outcomes: P 0.0001). The topical capsaicin robustly, and with similar efficaciousness, inhibited itch intensity evoked by electrical stimulation and histamine (−89 ± 4.1% and −78 ± 4.9%, respectively, both: P 0.0001 compared to the placebo patch area). The predominant primary afferent substrate for electrically evoked itch in humans, using the presently applied stimulation paradigm, is concluded to be capsaicin-sensitive polymodal C-fibers.FSW - Self-regulation models for health behavior and psychopathology - ou

    Screening of Spherical Colloids beyond Mean Field -- A Local Density Functional Approach

    Get PDF
    We study the counterion distribution around a spherical macroion and its osmotic pressure in the framework of the recently developed Debye-H"uckel-Hole-Cavity (DHHC) theory. This is a local density functional approach which incorporates correlations into Poisson-Boltzmann theory by adding a free energy correction based on the One Component Plasma. We compare the predictions for ion distribution and osmotic pressure obtained by the full theory and by its zero temperature limit with Monte Carlo simulations. They agree excellently for weakly developed correlations and give the correct trend for stronger ones. In all investigated cases the DHHC theory and its computationally simpler zero temperature limit yield better results than the Poisson-Boltzmann theory.Comment: 10 pages, 4 figures, 2 tables, RevTeX4-styl

    Strong Attraction between Charged Spheres due to Metastable Ionized States

    Full text link
    We report a mechanism which can lead to long range attractions between like-charged spherical macroions, stemming from the existence of metastable ionized states. We show that the ground state of a single highly charged colloid plus a few excess counterions is overcharged. For the case of two highly charged macroions in their neutralizing divalent counterion solution we demonstrate that, in the regime of strong Coulomb coupling, the counterion clouds are very likely to be unevenly distributed, leading to one overcharged and one undercharged macroion. This long-living metastable configuration in turn leads to a long range Coulomb attraction.Comment: REVTEX-published versio
    • …
    corecore