9,477 research outputs found

    Variational Principles for Lagrangian Averaged Fluid Dynamics

    Full text link
    The Lagrangian average (LA) of the ideal fluid equations preserves their transport structure. This transport structure is responsible for the Kelvin circulation theorem of the LA flow and, hence, for its convection of potential vorticity and its conservation of helicity. Lagrangian averaging also preserves the Euler-Poincar\'e (EP) variational framework that implies the LA fluid equations. This is expressed in the Lagrangian-averaged Euler-Poincar\'e (LAEP) theorem proven here and illustrated for the Lagrangian average Euler (LAE) equations.Comment: 23 pages, 3 figure

    Forward velocity effects on fan noise and the influence of inlet aeroacoustic design as measured in the NASA Ames 40 x 80 foot wind tunnel

    Get PDF
    The inlet radiated noise of a turbofan engine was studied. The principal research objectives were to characterize or suppress such noise with particular regard to its tonal characteristics. The major portion of this research was conducted by using ground-based static testing without simulation of aircraft forward speed or aircraft installation-related aeroacoustic effects

    The fish fauna of the Iwokrama Forest

    Get PDF
    Fishes were collected from the rivers in and around the Iwokrama Forest during January-February and November-December 1997. Four hundred species of fish were recorded from forty families in ten orders. Many of these fishes are newly recorded from Guyana and several are thought to be endemic. The number of species recorded for the area is surprising given the low level of effort and suggests that this area may be particularly important from a fish diversity perspective. This paper focuses on species of particular interest from a management perspective including those considered economically important, rare or endangered. The paper is also the basis for developing fisheries management systems in the Iwokrama Forest and Rupununi Wetlands

    Emergent singular solutions of non-local density-magnetization equations in one dimension

    Full text link
    We investigate the emergence of singular solutions in a non-local model for a magnetic system. We study a modified Gilbert-type equation for the magnetization vector and find that the evolution depends strongly on the length scales of the non-local effects. We pass to a coupled density-magnetization model and perform a linear stability analysis, noting the effect of the length scales of non-locality on the system's stability properties. We carry out numerical simulations of the coupled system and find that singular solutions emerge from smooth initial data. The singular solutions represent a collection of interacting particles (clumpons). By restricting ourselves to the two-clumpon case, we are reduced to a two-dimensional dynamical system that is readily analyzed, and thus we classify the different clumpon interactions possible.Comment: 19 pages, 13 figures. Submitted to Phys. Rev.

    Signalment risk factors for cutaneous and renal glomerular vasculopathy (Alabama rot) in dogs in the UK

    Get PDF
    Seasonal outbreaks of cutaneous and renal glomerular vasculopathy (CRGV) have been reported annually in UK dogs since 2012, yet the aetiology of the disease remains unknown. The objectives of this study were to explore whether any breeds had an increased or decreased risk of being diagnosed with CRGV, and to report on age and sex distributions of CRGV cases occurring in the UK. Multivariable logistic regression was used to compare 101 dogs diagnosed with CRGV between November 2012 and May 2017 with a denominator population of 446,453 dogs from the VetCompass database. Two Kennel Club breed groups—hounds (odds ratio (OR) 10.68) and gun dogs (OR 9.69)—had the highest risk of being diagnosed with CRGV compared with terriers, while toy dogs were absent from among CRGV cases. Females were more likely to be diagnosed with CRGV (OR 1.51) as were neutered dogs (OR 3.36). As well as helping veterinarians develop an index of suspicion for the disease, better understanding of the signalment risk factors may assist in the development of causal models for CRGV and help identify the aetiology of the disease

    Editorial

    Get PDF
    In this editorial a summary of the main contributions and outcomes of the conference celebrated in Seville about Radioecological Concentration processes during six intense sessions is given. It was quite remarkable in addition to the good quality of the communications presented, the active participation of the delegates and the good working atmosphere created during the conference as well as the participation of a good set of young researchers that will construct the future of the radioecology. In addition, it was possible to obtain as a main conclusion of the conference that the radioecology is in good health with a set of emerging new topics under development

    Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide

    Full text link
    The optical coupling of guided modes in a GaP waveguide to nitrogen-vacancy (NV) centers in diamond is demonstrated. The electric field penetration into diamond and the loss of the guided mode are measured. The results indicate that the GaP-diamond system could be useful for realizing coupled microcavity-NV devices for quantum information processing in diamond.Comment: 4 pages 4 figure

    An integrable shallow water equation with peaked solitons

    Full text link
    We derive a new completely integrable dispersive shallow water equation that is biHamiltonian and thus possesses an infinite number of conservation laws in involution. The equation is obtained by using an asymptotic expansion directly in the Hamiltonian for Euler's equations in the shallow water regime. The soliton solution for this equation has a limiting form that has a discontinuity in the first derivative at its peak.Comment: LaTeX file. Figure available from authors upon reques

    Breakdown of disordered media by surface loads

    Full text link
    We model an interface layer connecting two parts of a solid body by N parallel elastic springs connecting two rigid blocks. We load the system by a shear force acting on the top side. The springs have equal stiffness but are ruptured randomly when the load reaches a critical value. For the considered system, we calculate the shear modulus, G, as a function of the order parameter, \phi, describing the state of damage, and also the ``spalled'' material (burst) size distribution. In particular, we evaluate the relation between the damage parameter and the applied force and explore the behaviour in the vicinity of material breakdown. Using this simple model for material breakdown, we show that damage, caused by applied shear forces, is analogous to a first-order phase transition. The scaling behaviour of G with \phi is explored analytically and numerically, close to \phi=0 and \phi=1 and in the vicinity of \phi_c, when the shear load is close but below the threshold force that causes material breakdown. Our model calculation represents a first approximation of a system subject to wear induced loads.Comment: 15 pages, 7 figure

    An Integrable Shallow Water Equation with Linear and Nonlinear Dispersion

    Full text link
    We study a class of 1+1 quadratically nonlinear water wave equations that combines the linear dispersion of the Korteweg-deVries (KdV) equation with the nonlinear/nonlocal dispersion of the Camassa-Holm (CH) equation, yet still preserves integrability via the inverse scattering transform (IST) method. This IST-integrable class of equations contains both the KdV equation and the CH equation as limiting cases. It arises as the compatibility condition for a second order isospectral eigenvalue problem and a first order equation for the evolution of its eigenfunctions. This integrable equation is shown to be a shallow water wave equation derived by asymptotic expansion at one order higher approximation than KdV. We compare its traveling wave solutions to KdV solitons.Comment: 4 pages, no figure
    • …
    corecore