We investigate the emergence of singular solutions in a non-local model for a
magnetic system. We study a modified Gilbert-type equation for the
magnetization vector and find that the evolution depends strongly on the length
scales of the non-local effects. We pass to a coupled density-magnetization
model and perform a linear stability analysis, noting the effect of the length
scales of non-locality on the system's stability properties. We carry out
numerical simulations of the coupled system and find that singular solutions
emerge from smooth initial data. The singular solutions represent a collection
of interacting particles (clumpons). By restricting ourselves to the
two-clumpon case, we are reduced to a two-dimensional dynamical system that is
readily analyzed, and thus we classify the different clumpon interactions
possible.Comment: 19 pages, 13 figures. Submitted to Phys. Rev.