7,135 research outputs found
Two-component {CH} system: Inverse Scattering, Peakons and Geometry
An inverse scattering transform method corresponding to a Riemann-Hilbert
problem is formulated for CH2, the two-component generalization of the
Camassa-Holm (CH) equation. As an illustration of the method, the multi -
soliton solutions corresponding to the reflectionless potentials are
constructed in terms of the scattering data for CH2.Comment: 22 pages, 3 figures, draft, please send comment
Induced activation in accelerator components
The residual activity induced in particle accelerators is a serious issue from the point of view of radiation safety as the long-lived radionuclides produced by fast or moderated neutrons and impact protons cause problems of radiation exposure for staff involved in the maintenance work and when decommissioning the facility. This paper presents activation studies of the magnets and collimators in the High Energy Beam Transport line of the European Spallation Source due to the backscattered neutrons from the target and also due to the direct proton interactions and their secondaries. An estimate of the radionuclide inventory and induced activation are predicted using the GEANT4 code
An Integrable Shallow Water Equation with Linear and Nonlinear Dispersion
We study a class of 1+1 quadratically nonlinear water wave equations that
combines the linear dispersion of the Korteweg-deVries (KdV) equation with the
nonlinear/nonlocal dispersion of the Camassa-Holm (CH) equation, yet still
preserves integrability via the inverse scattering transform (IST) method.
This IST-integrable class of equations contains both the KdV equation and the
CH equation as limiting cases. It arises as the compatibility condition for a
second order isospectral eigenvalue problem and a first order equation for the
evolution of its eigenfunctions. This integrable equation is shown to be a
shallow water wave equation derived by asymptotic expansion at one order higher
approximation than KdV. We compare its traveling wave solutions to KdV
solitons.Comment: 4 pages, no figure
Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide
The optical coupling of guided modes in a GaP waveguide to nitrogen-vacancy
(NV) centers in diamond is demonstrated. The electric field penetration into
diamond and the loss of the guided mode are measured. The results indicate that
the GaP-diamond system could be useful for realizing coupled microcavity-NV
devices for quantum information processing in diamond.Comment: 4 pages 4 figure
Nanomechanics of a magnetic shuttle device
We show that self sustained mechanical vibrations in a model magnetic shuttle device can be driven by both the charge and the spin accumulated on the movable central island of the device. Different scenarios for how spin- and charge-induced shuttle instabilities may develop are discussed and shown to depend on whether there is a Coulomb blockade of tunneling or not. The crucial role of electronic spin flips in a magnetically driven shuttle is established and shown to cause giant magnetoresistance and dynamic magnetostriction effects
Mean-Field HP Model, Designability and Alpha-Helices in Protein Structures
Analysis of the geometric properties of a mean-field HP model on a square
lattice for protein structure shows that structures with large number of switch
backs between surface and core sites are chosen favorably by peptides as unique
ground states. Global comparison of model (binary) peptide sequences with
concatenated (binary) protein sequences listed in the Protein Data Bank and the
Dali Domain Dictionary indicates that the highest correlation occurs between
model peptides choosing the favored structures and those portions of protein
sequences containing alpha-helices.Comment: 4 pages, 2 figure
Comparative analysis of homology models of the Ah receptor ligand binding domain: Verification of structure-function predictions by site-directed mutagenesis of a nonfunctional receptor
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates the biological and toxic effects of a wide variety of structurally diverse chemicals, including the toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While significant interspecies differences in AHR ligand binding specificity, selectivity, and response have been observed, the structural determinants responsible for those differences have not been determined, and homology models of the AHR ligand-binding domain (LBD) are available for only a few species. Here we describe the development and comparative analysis of homology models of the LBD of 16 AHRs from 12 mammalian and nonmammalian species and identify the specific residues contained within their ligand binding cavities. The ligand-binding cavity of the fish AHR exhibits differences from those of mammalian and avian AHRs, suggesting a slightly different TCDD binding mode. Comparison of the internal cavity in the LBD model of zebrafish (zf) AHR2, which binds TCDD with high affinity, to that of zfAHR1a, which does not bind TCDD, revealed that the latter has a dramatically shortened binding cavity due to the side chains of three residues (Tyr296, Thr386, and His388) that reduce the amount of internal space available to TCDD. Mutagenesis of two of these residues in zfAHR1a to those present in zfAHR2 (Y296H and T386A) restored the ability of zfAHR1a to bind TCDD and to exhibit TCDD-dependent binding to DNA. These results demonstrate the importance of these two amino acids and highlight the predictive potential of comparative analysis of homology models from diverse species. The availability of these AHR LBD homology models will facilitate in-depth comparative studies of AHR ligand binding and ligand-dependent AHR activation and provide a novel avenue for examining species-specific differences in AHR responsiveness. © 2013 American Chemical Society
Magnetization of polydisperse colloidal ferrofluids: Effect of magnetostriction
We exploit magnetostriction in polydisperse ferrofluids in order to generate
nonlinear responses, and apply a thermodynamical method to derive the desired
nonlinear magnetic susceptibility. For an ideal gas, this method has been
demonstrated to be in excellent agreement with a statistical method. In the
presence of a sinusoidal ac magnetic field, the magnetization of the
polydisperse ferrofluid contains higher-order harmonics, which can be extracted
analytically by using a perturbation approach. We find that the harmonics are
sensitive to the particle distribution and the degree of field-induced
anisotropy of the system. In addition, we find that the magnetization is higher
in the polydisperse system than in the monodisperse one, as also found by a
recent Monte Carlo simulation. Thus, it seems possible to detect the size
distribution in a polydisperse ferrofluid by measuring the harmonics of the
magnetization under the influence of magnetostriction.Comment: 23 pages, 4 figures. To be accepted for publication in Phys. Rev.
On a Camassa-Holm type equation with two dependent variables
We consider a generalization of the Camassa Holm (CH) equation with two
dependent variables, called CH2, introduced by Liu and Zhang. We briefly
provide an alternative derivation of it based on the theory of Hamiltonian
structures on (the dual of) a Lie Algebra. The Lie Algebra here involved is the
same algebra underlying the NLS hierarchy. We study the structural properties
of the CH2 hierarchy within the bihamiltonian theory of integrable PDEs, and
provide its Lax representation. Then we explicitly discuss how to construct
classes of solutions, both of peakon and of algebro-geometrical type. We
finally sketch the construction of a class of singular solutions, defined by
setting to zero one of the two dependent variables.Comment: 22 pages, 2 figures. A few typos correcte
A tough egg to crack: recreational boats as vectors for invasive goby eggs and transdisciplinary management approaches
Non-native invasive species are a major threat to biodiversity, especially in freshwater ecosystems. Freshwater ecosystems are naturally rather isolated from one another. Nonetheless, invasive species often spread rapidly across water sheds. This spread is to a large extent realized by human activities that provide vectors. For example, recreational boats can carry invasive species propagules as ‘aquatic hitch-hikers’ within and across water sheds. We used invasive gobies in Switzerland as a case study to test the plausibility that recreational boats can serve as vectors for invasive fish and that fish eggs can serve as propagules. We found that the peak season of boat movements across Switzerland and the goby spawning season overlap temporally. It is thus plausible that goby eggs attached to boats, anchors or gear may be transported across watersheds. In experimental trials we found that goby eggs show resistance to physical removal (90mN attachment strength of individual eggs) and stay attached if exposed to rapid water flow (2.8m s-138 for 1h). When exposing the eggs to air, we found that hatching success remained high (>95%) even after eggs had been out of water for up to 24h. It is thus plausible that eggs survive during pick up, within water and overland transport by boats. We complemented the experimental plausibility tests with a survey on how decision makers from inside and outside academia rate the feasibility of managing recreational boats as vectors. We found consensus that an installation of a preventive boat vector management is considered an effective and urgent measure. This study advances our understanding of the potential of recreational boats to serve as vectors for invasive vertebrate species, and demonstrates that preventive management of recreational boats is considered feasible by relevant decision makers in- and outside academia
- …