169 research outputs found

    The role of damped Alfven waves on magnetospheric accretion models of young stars

    Get PDF
    We examine the role of Alfven wave damping in heating the plasma in the magnetic funnels of magnetospheric accretion models of young stars. We study four different damping mechanisms of the Alfven waves: nonlinear, turbulent, viscous-resistive and collisional. Two different possible origins for the Alfven waves are discussed: 1) Alfven waves generated at the surface of the star by the shock produced by the infalling matter; and 2) Alfven waves generated locally in the funnel by the Kelvin-Helmholtz instability. We find that, in general, the damping lengths are smaller than the tube length. Since thermal conduction in the tube is not efficient, Alfven waves generated only at the star's surface cannot heat the tube to the temperatures necessary to fit the observations. Only for very low frequency Alfven waves ~10^{-5} the ion cyclotron frequency, is the viscous-resistive damping length greater than the tube length. In this case, the Alfven waves produced at the surface of the star are able to heat the whole tube. Otherwise, local production of Alfven waves is required to explain the observations. The turbulence level is calculated for different frequencies for optically thin and thick media. We find that turbulent velocities varies greatly for different damping mechanisms, reaching \~100 km s^{-1} for the collisional damping of small frequency waves.Comment: 29 pages, 12 figures, to appear in The Astrophysical Journa

    Twisting Flux Tubes as a cause of Micro-Flaring Activity

    Full text link
    High-cadence optical observations of an H-alpha blue-wing bright point near solar AR NOAA 10794 are presented. The data were obtained with the Dunn Solar Telescope at the National Solar Observatory/Sacramento Peak using a newly developed camera system, the Rapid Dual Imager. Wavelet analysis is undertaken to search for intensity-related oscillatory signatures, and periodicities ranging from 15 to 370 s are found with significance levels exceeding 95%. During two separate microflaring events, oscillation sites surrounding the bright point are observed to twist. We relate the twisting of the oscillation sites to the twisting of physical flux tubes, thus giving rise to reconnection phenomena. We derive an average twist velocity of 8.1 km/s and detect a peak in the emitted flux between twist angles of 180 and 230 degrees.Comment: 8 pages, 10 figure

    Dissipative Dynamics of Collisionless Nonlinear Alfven Wave Trains

    Full text link
    The nonlinear dynamics of collisionless Alfven trains, including resonant particle effects is studied using the kinetic nonlinear Schroedinger (KNLS) equation model. Numerical solutions of the KNLS reveal the dynamics of Alfven waves to be sensitive to the sense of polarization as well as the angle of propagation with respect to the ambient magnetic field. The combined effects of both wave nonlinearity and Landau damping result in the evolutionary formation of stationaryOA S- and arc-polarized directional and rotational discontinuities. These waveforms are freqently observed in the interplanetary plasma.Comment: REVTeX, 6 pages (including 5 figures). This and other papers may be found at http://sdphpd.ucsd.edu/~medvedev/papers.htm

    Determining the Magnetic Field Orientation of Coronal Mass Ejections from Faraday Rotation

    Full text link
    We describe a method to measure the magnetic field orientation of coronal mass ejections (CMEs) using Faraday rotation (FR). Two basic FR profiles, Gaussian-shaped with a single polarity or "N"-like with polarity reversals, are produced by a radio source occulted by a moving flux rope depending on its orientation. These curves are consistent with the Helios observations, providing evidence for the flux-rope geometry of CMEs. Many background radio sources can map CMEs in FR onto the sky. We demonstrate with a simple flux rope that the magnetic field orientation and helicity of the flux rope can be determined 2-3 days before it reaches Earth, which is of crucial importance for space weather forecasting. An FR calculation based on global magnetohydrodynamic (MHD) simulations of CMEs in a background heliosphere shows that FR mapping can also resolve a CME geometry curved back to the Sun. We discuss implementation of the method using data from the Mileura Widefield Array (MWA).Comment: 22 pages with 9 figures, accepted for publication in Astrophys.

    Magnetic Landscape of Sun's Polar Region

    Full text link
    We present the magnetic landscape of the polar region of the Sun that is unprecedented in terms of high spatial resolution, large field of view, and polarimetric precision. These observations were carried out with the Solar Optical Telescope aboard \emph{Hinode}. Using a Milne-Eddington inversion, we found many vertically-oriented magnetic flux tubes with field strength as strong as 1 kG that are scattered in latitude between 70-90 degree. They all have the same polarity, consistent with the global polarity of the polar region. The field vectors were observed to diverge from the center of the flux elements, consistent with a view of magnetic fields that expand and fan out with height. The polar region is also covered with ubiquitous horizontal fields. The polar regions are the source of the fast solar wind channelled along unipolar coronal magnetic fields whose photospheric source is evidently rooted in the strong field, vertical patches of flux. We conjecture that vertical flux tubes with large expansion around the photosphere-corona boundary serve as efficient chimneys for Alfven waves that accelerate the solar wind.Comment: Astrophysical Journal in press V1 and V2 are the sam

    On Solving the Coronal Heating Problem

    Full text link
    This article assesses the current state of understanding of coronal heating, outlines the key elements of a comprehensive strategy for solving the problem, and warns of obstacles that must be overcome along the way.Comment: Accepted by Solar Physics; Published by Solar Physic

    Oscillations and waves in solar spicules

    Get PDF
    Since their discovery, spicules have attracted increased attention as energy/mass bridges between the dense and dynamic photosphere and the tenuous hot solar corona. Mechanical energy of photospheric random and coherent motions can be guided by magnetic field lines, spanning from the interior to the upper parts of the solar atmosphere, in the form of waves and oscillations. Since spicules are one of the most pronounced features of the chromosphere, the energy transport they participate in can be traced by the observations of their oscillatory motions. Oscillations in spicules have been observed for a long time. However the recent high-resolutions and high-cadence space and ground based facilities with superb spatial, temporal and spectral capacities brought new aspects in the research of spicule dynamics. Here we review the progress made in imaging and spectroscopic observations of waves and oscillations in spicules. The observations are accompanied by a discussion on theoretical modelling and interpretations of these oscillations. Finally, we embark on the recent developments made on the presence and role of Alfven and kink waves in spicules. We also address the extensive debate made on the Alfven versus kink waves in the context of the explanation of the observed transverse oscillations of spicule axes

    Excitation of standing kink oscillations in coronal loops

    Full text link
    In this work we review the efforts that have been done to study the excitation of the standing fast kink body mode in coronal loops. We mainly focus on the time-dependent problem, which is appropriate to describe flare or CME induced kink oscillations. The analytical and numerical studies in slab and cylindrical loop geometries are reviewed. We discuss the results from very simple one-dimensional models to more realistic (but still simple) loop configurations. We emphasise how the results of the initial value problem complement the eigenmode calculations. The possible damping mechanisms of the kink oscillations are also discussed

    Acoustic Power Absorption and its Relation with Vector Magnetic Field of a Sunspot

    Full text link
    The distribution of acoustic power over sunspots shows an enhanced absorption near the umbra--penumbra boundary. Earlier studies revealed that the region of enhanced absorption coincides with the region of strongest transverse potential field. The aim of this paper is to (i) utilize the high-resolution vector magnetograms derived using Hinode SOT/SP observations and study the relationship between the vector magnetic field and power absorption and (ii) study the variation of power absorption in sunspot penumbrae due to the presence of spine-like radial structures. It is found that (i) both potential and observed transverse fields peak at a similar radial distance from the center of the sunspot, and (ii) the magnitude of the transverse field, derived from Hinode observations, is much larger than the potential transverse field derived from SOHO/MDI longitudinal field observations. In the penumbra, the radial structures called spines (intra-spines) have stronger (weaker) field strength and are more vertical (horizontal). The absorption of acoustic power in the spine and intra-spine shows different behaviour with the absorption being larger in the spine as compared to the intra-spine.Comment: 18 pages, 7 figures, In Press Solar Physics, Topical Issue on Helio-and-Astroseismolog
    • 

    corecore