228 research outputs found

    The significance of subsurface chlorophyll, nitrite and ammonium maxima in relation to nitrogen for phytoplankton growth in stratified waters of the Gulf of Maine

    Get PDF
    Data on the distributions in summer of phytoplankton and inorganic nutrients in the Gulf of Maine and across Georges Bank are presented. The chlorophyll maximum represents a phytoplankton biomass maximum and occurs at a depth where both light and nitrate availability allow net growth of the population. The dominant species were generally flagellates and included the toxic dinoflagellate, Gonyaulax tamarensis var. excavata, at some stations. The ammonium and nitrite profiles suggest that nitrification is occurring at the base of the pycnocline below the chlorophyll maximum, and this may be an important source of nitrate during the summer months. The highest levels of nitrite and ammonium were found over the slopes of Georges Bank

    In-situ formation of solidified hydrogen thin-membrane targets using a pulse tube cryocooler

    Get PDF
    An account is given of the Central Laser Facility's work to produce a cryogenic hydrogen targetry system using a pulse tube cryocooler. Due to the increasing demand for low Z thin laser targets, CLF (in collaboration with TUD) have been developing a system which allows the production of solid hydrogen membranes by engineering a design which can achieve this remotely; enabling the gas injection, condensation and solidification of hydrogen without compromising the vacuum of the target chamber. A dynamic sealing mechanism was integrated which allows targets to be grown and then remotely exposed to open vacuum for laser interaction. Further research was conducted on the survivability of the cryogenic targets which concluded that a warm gas effect causes temperature spiking when exposing the solidified hydrogen to the outer vacuum. This effect was shown to be mitigated by improving the pumping capacity of the environment and reducing the minimum temperature obtainable on the target mount. This was achieved by developing a two-stage radiation shield encased with superinsulating blanketing; reducing the base temperature from 14 0.5 K to 7.2 0.2 K about the coldhead as well as improving temperature control stability following the installation of a high-performance temperature controller and sensor apparatus. The system was delivered experimentally and in July 2014 the first laser shots were taken upon hydrogen targets in the Vulcan TAP facility.</p

    A global compilation of coccolithophore calcification rates

    Get PDF
    The biological production of calcium carbonate (CaCO3), a process termed calcification, is a key term in the marine carbon cycle. A major planktonic group responsible for such pelagic CaCO3 production (CP) is the coccolithophores, single-celled haptophytes that inhabit the euphotic zone of the ocean. Satellite-based estimates of areal CP are limited to surface waters and open-ocean areas, with current algorithms utilising the unique optical properties of the cosmopolitan bloom-forming species Emiliania huxleyi, whereas little understanding of deep-water ecology, optical properties or environmental responses by species other than E. huxleyi is currently available to parameterise algorithms or models. To aid future areal estimations and validate future modelling efforts we have constructed a database of 2765CP measurements, the majority of which were measured using 12 to 24h incorporation of radioactive carbon (14C) into acid-labile inorganic carbon (CaCO3). We present data collated from over 30 studies covering the period from 1991 to 2015, sampling the Atlantic, Pacific, Indian, Arctic and Southern oceans. Globally, CP in surface waters ( < 20m) ranged from 0.01 to 8398µmolCm−3d−1 (with a geometric mean of 16.1µmolCm−3d−1). An integral value for the upper euphotic zone (herein surface to the depth of 1% surface irradiance) ranged from  < 0.1 to 6mmolCm−2d−1 (geometric mean 1.19mmolCm−2d−1). The full database is available for download from PANGAEA at https://doi.org/10.1594/PANGAEA.888182

    Dimethyl sulfide production: what is the contribution of the coccolithophores?

    Get PDF

    Synthesis of Bio-Compatible SPION–based Aqueous Ferrofluids and Evaluation of RadioFrequency Power Loss for Magnetic Hyperthermia

    Get PDF
    Bio-compatible magnetic fluids having high saturation magnetization find immense applications in various biomedical fields. Aqueous ferrofluids of superparamagnetic iron oxide nanoparticles with narrow size distribution, high shelf life and good stability is realized by controlled chemical co-precipitation process. The crystal structure is verified by X-ray diffraction technique. Particle sizes are evaluated by employing Transmission electron microscopy. Room temperature and low-temperature magnetic measurements were carried out with Superconducting Quantum Interference Device. The fluid exhibits good magnetic response even at very high dilution (6.28 mg/cc). This is an advantage for biomedical applications, since only a small amount of iron is to be metabolised by body organs. Magnetic field induced transmission measurements carried out at photon energy of diode laser (670 nm) exhibited excellent linear dichroism. Based on the structural and magnetic measurements, the power loss for the magnetic nanoparticles under study is evaluated over a range of radiofrequencies

    A global compilation of coccolithophore calcification rates

    Get PDF
    The biological production of calcium carbonate (CaCO3), a process termed calcification, is a key term in the marine carbon cycle. A major planktonic group responsible for such pelagic CaCO3 production (CP) is the coccolithophores, single-celled haptophytes that inhabit the euphotic zone of the ocean. Satellite-based estimates of areal CP are limited to surface waters and open-ocean areas, with current algorithms utilising the unique optical properties of the cosmopolitan bloom-forming species Emiliania huxleyi, whereas little understanding of deep-water ecology, optical properties or environmental responses by species other than E. huxleyi is currently available to parameterise algorithms or models. To aid future areal estimations and validate future modelling efforts we have constructed a database of 2765 CP measurements, the majority of which were measured using 12 to 24 h incorporation of radioactive carbon (14C) into acid-labile inorganic carbon (CaCO3). We present data collated from over 30 studies covering the period from 1991 to 2015, sampling the Atlantic, Pacific, Indian, Arctic and Southern oceans. Globally, CP in surface waters ( < 20 m) ranged from 0.01 to 8398 µmol C m−3 d−1 (with a geometric mean of 16.1 µmol C m−3 d−1). An integral value for the upper euphotic zone (herein surface to the depth of 1 % surface irradiance) ranged from  < 0.1 to 6 mmol C m−2 d−1 (geometric mean 1.19 mmol C m−2 d−1). The full database is available for download from PANGAEA at https://doi.org/10.1594/PANGAEA.888182

    Stable Photosymbiotic Relationship under CO2-Induced Acidification in the Acoel Worm Symsagittifera Roscoffensis

    Get PDF
    As a consequence of anthropogenic CO2 emissions, oceans are becoming more acidic, a phenomenon known as ocean acidification. Many marine species predicted to be sensitive to this stressor are photosymbiotic, including corals and foraminifera. However, the direct impact of ocean acidification on the relationship between the photosynthetic and nonphotosynthetic organism remains unclear and is complicated by other physiological processes known to be sensitive to ocean acidification (e.g. calcification and feeding). We have studied the impact of extreme pH decrease/pCO2 increase on the complete life cycle of the photosymbiotic, non-calcifying and pure autotrophic acoel worm, Symsagittifera roscoffensis. Our results show that this species is resistant to high pCO2 with no negative or even positive effects on fitness (survival, growth, fertility) and/or photosymbiotic relationship till pCO2 up to 54 K µatm. Some sub-lethal bleaching is only observed at pCO2 up to 270 K µatm when seawater is saturated by CO2. This indicates that photosymbiosis can be resistant to high pCO2. If such a finding would be confirmed in other photosymbiotic species, we could then hypothesize that negative impact of high pCO2 observed on other photosymbiotic species such as corals and foraminifera could occur through indirect impacts at other levels (calcification, feeding)

    In-situ formation of solidified hydrogen thin-membrane targets using a pulse tube cryocooler

    Get PDF
    An account is given of the Central Laser Facility's work to produce a cryogenic hydrogen targetry system using a pulse tube cryocooler. Due to the increasing demand for low Z thin laser targets, CLF (in collaboration with TUD) have been developing a system which allows the production of solid hydrogen membranes by engineering a design which can achieve this remotely; enabling the gas injection, condensation and solidification of hydrogen without compromising the vacuum of the target chamber. A dynamic sealing mechanism was integrated which allows targets to be grown and then remotely exposed to open vacuum for laser interaction. Further research was conducted on the survivability of the cryogenic targets which concluded that a warm gas effect causes temperature spiking when exposing the solidified hydrogen to the outer vacuum. This effect was shown to be mitigated by improving the pumping capacity of the environment and reducing the minimum temperature obtainable on the target mount. This was achieved by developing a two-stage radiation shield encased with superinsulating blanketing; reducing the base temperature from 14 ± 0.5 K to 7.2 ± 0.2 K about the coldhead as well as improving temperature control stability following the installation of a high-performance temperature controller and sensor apparatus. The system was delivered experimentally and in July 2014 the first laser shots were taken upon hydrogen targets in the Vulcan TAP facility
    corecore