18 research outputs found

    A preliminary audit of medical and aid provision in English Rugby union clubs:compliance with Regulation 9

    Get PDF
    BackgroundGoverning bodies are largely responsible for the monitoring and management of risks associated with a safe playing environment, yet adherence to regulations is currently unknown. The aim of this study was to investigate and evaluate the current status of medical personnel, facilities, and equipment in Rugby Union clubs at regional level in England.MethodsA nationwide cross-sectional survey of 242 registered clubs was undertaken, where clubs were surveyed online on their current medical personnel, facilities, and equipment provision, according to regulation 9 of the Rugby Football Union (RFU).ResultsOverall, 91 (45. 04%) surveys were returned from the successfully contacted recipients. Of the completed responses, only 23.61% (n = 17) were found to be compliant with regulations. Furthermore, 30.56% (n = 22) of clubs were unsure if their medical personnel had required qualifications; thus, compliance could not be determined. There was a significant correlation (p = −0.029, r = 0.295) between club level and numbers of practitioners. There was no significant correlation indicated between the number of practitioners/number of teams and number of practitioners/number of players. There were significant correlations found between club level and equipment score (p = 0.003, r = −0.410), club level and automated external defibrillator (AED) access (p = 0.002, r = −0.352) and practitioner level and AED access (p = 0.0001, r = 0.404). Follow-up, thematic analysis highlighted widespread club concern around funding/cost, awareness, availability of practitioners and AED training.ConclusionThe proportion of clubs not adhering overall compliance with Regulation 9 of the RFU is concerning for player welfare, and an overhaul, nationally, is required

    Interpreting whole genome sequencing for investigating tuberculosis transmission: a systematic review

    Get PDF
    BACKGROUND: Whole genome sequencing (WGS) is becoming an important part of epidemiological investigations of infectious diseases due to greater resolution and cost reductions compared to traditional typing approaches. Many public health and clinical teams will increasingly use WGS to investigate clusters of potential pathogen transmission, making it crucial to understand the benefits and assumptions of the analytical methods for investigating the data. We aimed to understand how different approaches affect inferences of transmission dynamics and outline limitations of the methods. METHODS: We comprehensively searched electronic databases for studies that presented methods used to interpret WGS data for investigating tuberculosis (TB) transmission. Two authors independently selected studies for inclusion and extracted data. Due to considerable methodological heterogeneity between studies, we present summary data with accompanying narrative synthesis rather than pooled analyses. RESULTS: Twenty-five studies met our inclusion criteria. Despite the range of interpretation tools, the usefulness of WGS data in understanding TB transmission often depends on the amount of genetic diversity in the setting. Where diversity is small, distinguishing re-infections from relapses may be impossible; interpretation may be aided by the use of epidemiological data, examining minor variants and deep sequencing. Conversely, when within-host diversity is large, due to genetic hitchhiking or co-infection of two dissimilar strains, it is critical to understand how it arose. Greater understanding of microevolution and mixed infection will enhance interpretation of WGS data. CONCLUSIONS: As sequencing studies have sampled more intensely and integrated multiple sources of information, the understanding of TB transmission and diversity has grown, but there is still much to be learnt about the origins of diversity that will affect inferences from these data. Public health teams and researchers should combine epidemiological, clinical and WGS data to strengthen investigations of transmission

    Electrochemistry of well-defined graphene samples: role of contaminants

    No full text
    We report the electrochemical characterisation of well-defined graphene samples, prepared by mechanical exfoliation. Mechanical exfoliation is the method of choice for high purity graphene samples, despite the inherent complexity of the approach and the small scale of the resultant flakes. However, one important, yet presently unclear area, is the role of adsorbates such as processing residue, on the properties of the graphene layer. We report high resolution microscopic and electrochemical characterisation of a variety of poly(methyl methacrylate) (PMMA) transferred graphene samples, with the explicit aim of investigating the relationship between electrochemical activity and sample purity.</p
    corecore