72 research outputs found
Nonvanishing effect of detuning errors in dynamical-decoupling-based quantum sensing experiments
Characteristic dips appear in the coherence traces of a probe qubit when dynamical decoupling (DD) is applied
in synchrony with the precession of target nuclear spins, forming the basis for nanoscale nuclear magnetic
resonance (NMR). The frequency of the microwave control pulses is chosen to match the qubit transition
but this can be detuned from resonance by experimental errors, hyperfine coupling intrinsic to the qubit, or
inhomogeneous broadening. The detuning acts as an additional static field which is generally assumed to be
completely removed in Hahn echo and DD experiments. Here we demonstrate that this is not the case in
the presence of finite pulse-durations, where a detuning can drastically alter the coherence response of the
probe qubit, with important implications for sensing applications. Using the electronic spin associated with a
nitrogen-vacancy center in diamond as a test qubit system, we analytically and experimentally study the qubit
coherence response under CPMG and XY8 dynamical decoupling control schemes in the presence of finite
pulse-durations and static detunings. Most striking is the splitting of the NMR resonance under CPMG, whereas
under XY8 the amplitude of the NMR signal is modulated. Our work shows that the detuning error must not be
neglected when extracting data from quantum sensor coherence traces
Truncated Schwinger-Dyson Equations and Gauge Covariance in QED3
We study the Landau-Khalatnikov-Fradkin transformations (LKFT) in momentum
space for the dynamically generated mass function in QED3. Starting from the
Landau gauge results in the rainbow approximation, we construct solutions in
other covariant gauges. We confirm that the chiral condensate is gauge
invariant as the structure of the LKFT predicts. We also check that the gauge
dependence of the constituent fermion mass is considerably reduced as compared
to the one obtained directly by solving SDE.Comment: 17 pages, 11 figures. v3. Improved and Expanded. To appear in Few
Body System
Silicon-based spin and charge quantum computation
Silicon-based quantum-computer architectures have attracted attention because
of their promise for scalability and their potential for synergetically
utilizing the available resources associated with the existing Si technology
infrastructure. Electronic and nuclear spins of shallow donors (e.g.
phosphorus) in Si are ideal candidates for qubits in such proposals due to the
relatively long spin coherence times. For these spin qubits, donor electron
charge manipulation by external gates is a key ingredient for control and
read-out of single-qubit operations, while shallow donor exchange gates are
frequently invoked to perform two-qubit operations. More recently, charge
qubits based on tunnel coupling in P substitutional molecular ions in Si
have also been proposed. We discuss the feasibility of the building blocks
involved in shallow donor quantum computation in silicon, taking into account
the peculiarities of silicon electronic structure, in particular the six
degenerate states at the conduction band edge. We show that quantum
interference among these states does not significantly affect operations
involving a single donor, but leads to fast oscillations in electron exchange
coupling and on tunnel-coupling strength when the donor pair relative position
is changed on a lattice-parameter scale. These studies illustrate the
considerable potential as well as the tremendous challenges posed by donor spin
and charge as candidates for qubits in silicon.Comment: Review paper (invited) - to appear in Annals of the Brazilian Academy
of Science
Electrical detection of 31P spin quantum states
In recent years, a variety of solid-state qubits has been realized, including
quantum dots, superconducting tunnel junctions and point defects. Due to its
potential compatibility with existing microelectronics, the proposal by Kane
based on phosphorus donors in Si has also been pursued intensively. A key issue
of this concept is the readout of the P quantum state. While electrical
measurements of magnetic resonance have been performed on single spins, the
statistical nature of these experiments based on random telegraph noise
measurements has impeded the readout of single spin states. In this letter, we
demonstrate the measurement of the spin state of P donor electrons in silicon
and the observation of Rabi flops by purely electric means, accomplished by
coherent manipulation of spin-dependent charge carrier recombination between
the P donor and paramagnetic localized states at the Si/SiO2 interface via
pulsed electrically detected magnetic resonance. The electron spin information
is shown to be coupled through the hyperfine interaction with the P nucleus,
which demonstrates the feasibility of a recombination-based readout of nuclear
spins
Scanning-probe spectroscopy of semiconductor donor molecules
Semiconductor devices continue to press into the nanoscale regime, and new
applications have emerged for which the quantum properties of dopant atoms act
as the functional part of the device, underscoring the necessity to probe the
quantum structure of small numbers of dopant atoms in semiconductors[1-3].
Although dopant properties are well-understood with respect to bulk
semiconductors, new questions arise in nanosystems. For example, the quantum
energy levels of dopants will be affected by the proximity of nanometer-scale
electrodes. Moreover, because shallow donors and acceptors are analogous to
hydrogen atoms, experiments on small numbers of dopants have the potential to
be a testing ground for fundamental questions of atomic and molecular physics,
such as the maximum negative ionization of a molecule with a given number of
positive ions[4,5]. Electron tunneling spectroscopy through isolated dopants
has been observed in transport studies[6,7]. In addition, Geim and coworkers
identified resonances due to two closely spaced donors, effectively forming
donor molecules[8]. Here we present capacitance spectroscopy measurements of
silicon donors in a gallium-arsenide heterostructure using a scanning probe
technique[9,10]. In contrast to the work of Geim et al., our data show
discernible peaks attributed to successive electrons entering the molecules.
Hence this work represents the first addition spectrum measurement of dopant
molecules. More generally, to the best of our knowledge, this study is the
first example of single-electron capacitance spectroscopy performed directly
with a scanning probe tip[9].Comment: In press, Nature Physics. Original manuscript posted here; 16 pages,
3 figures, 5 supplementary figure
Light-Cone Quantization and Hadron Structure
In this talk, I review the use of the light-cone Fock expansion as a
tractable and consistent description of relativistic many-body systems and
bound states in quantum field theory and as a frame-independent representation
of the physics of the QCD parton model. Nonperturbative methods for computing
the spectrum and LC wavefunctions are briefly discussed. The light-cone Fock
state representation of hadrons also describes quantum fluctuations containing
intrinsic gluons, strangeness, and charm, and, in the case of nuclei, "hidden
color". Fock state components of hadrons with small transverse size, such as
those which dominate hard exclusive reactions, have small color dipole moments
and thus diminished hadronic interactions; i.e., "color transparency". The use
of light-cone Fock methods to compute loop amplitudes is illustrated by the
example of the electron anomalous moment in QED. In other applications, such as
the computation of the axial, magnetic, and quadrupole moments of light nuclei,
the QCD relativistic Fock state description provides new insights which go well
beyond the usual assumptions of traditional hadronic and nuclear physics.Comment: LaTex 36 pages, 3 figures. To obtain a copy, send e-mail to
[email protected]
Entanglement in a 20-Qubit Superconducting Quantum Computer
The ability to prepare sizeable multi-qubit entangled states with full qubit control is a critical milestone for physical platforms upon which quantum computers are built. We investigate the extent to which entanglement is found within a prepared graph state on the 20-qubit superconducting quantum computer IBM Q Poughkeepsie. We prepared a graph state along a path consisting of all twenty qubits within the device and performed full quantum state tomography on all groups of four connected qubits along this path. We determined that each pair of connected qubits was inseparable and hence the prepared state was entangled. Additionally, a genuine multipartite entanglement witness was measured on all qubit subpaths of the graph state and we found genuine multipartite entanglement on chains of up to three qubits. These results represent a demonstration of entanglement in one of the largest solid-state qubit arrays to date and indicate the positive direction of progress towards the goal of implementing complex quantum algorithms relying on such effects
Fan-out Estimation in Spin-based Quantum Computer Scale-up
Solid-state spin-based qubits offer good prospects for scaling based on their long coherence times and nexus to large-scale electronic scale-up technologies. However, high-threshold quantum error correction requires a two-dimensional qubit array operating in parallel, posing significant challenges in fabrication and control. While architectures incorporating distributed quantum control meet this challenge head-on, most designs rely on individual control and readout of all qubits with high gate densities. We analysed the fan-out routing overhead of a dedicated control line architecture, basing the analysis on a generalised solid-state spin qubit platform parameterised to encompass Coulomb confined (e.g. donor based spin qubits) or electrostatically confined (e.g. quantum dot based spin qubits) implementations. The spatial scalability under this model is estimated using standard electronic routing methods and present-day fabrication constraints. Based on reasonable assumptions for qubit control and readout we estimate 102-105 physical qubits, depending on the quantum interconnect implementation, can be integrated and fanned-out independently. Assuming relatively long control-free interconnects the scalability can be extended. Ultimately, the universal quantum computation may necessitate a much higher number of integrated qubits, indicating that higher dimensional electronics fabrication and/or multiplexed distributed control and readout schemes may be the preferredstrategy for large-scale implementation
Framework for atomic-level characterisation of quantum computer arrays by machine learning
Atomic-level qubits in silicon are attractive candidates for large-scale quantum computing; however, their quantum properties and controllability are sensitive to details such as the number of donor atoms comprising a qubit and their precise location. This work combines machine learning techniques with million-atom simulations of scanning tunnelling microscopic (STM) images of dopants to formulate a theoretical framework capable of determining the number of dopants at a particular qubit location and their positions with exact lattice site precision. A convolutional neural network (CNN) was trained on 100,000 simulated STM images, acquiring a characterisation fidelity (number and absolute donor positions) of >98% over a set of 17,600 test images including planar and blurring noise commensurate with experimental measurements. The formalism is based on a systematic symmetry analysis and feature-detection processing of the STM images to optimise the computational efficiency. The technique is demonstrated for qubits formed by single and pairs of closely spaced donor atoms, with the potential to generalise it for larger donor clusters. The method established here will enable a high-precision post-fabrication characterisation of dopant qubits in silicon, with high-throughput potentially alleviating the requirements on the level of resources required for quantum-based characterisation, which will otherwise be a challenge in the context of large qubit arrays for universal quantum computing
- …