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Framework for atomic-level characterisation of quantum
computer arrays by machine learning
Muhammad Usman 1,2,3✉, Yi Zheng Wong1,2, Charles D. Hill2,4 and Lloyd C. L. Hollenberg1,2

Atomic-level qubits in silicon are attractive candidates for large-scale quantum computing; however, their quantum properties and
controllability are sensitive to details such as the number of donor atoms comprising a qubit and their precise location. This work
combines machine learning techniques with million-atom simulations of scanning tunnelling microscopic (STM) images of dopants
to formulate a theoretical framework capable of determining the number of dopants at a particular qubit location and their
positions with exact lattice site precision. A convolutional neural network (CNN) was trained on 100,000 simulated STM images,
acquiring a characterisation fidelity (number and absolute donor positions) of >98% over a set of 17,600 test images including
planar and blurring noise commensurate with experimental measurements. The formalism is based on a systematic symmetry
analysis and feature-detection processing of the STM images to optimise the computational efficiency. The technique is
demonstrated for qubits formed by single and pairs of closely spaced donor atoms, with the potential to generalise it for larger
donor clusters. The method established here will enable a high-precision post-fabrication characterisation of dopant qubits in
silicon, with high-throughput potentially alleviating the requirements on the level of resources required for quantum-based
characterisation, which will otherwise be a challenge in the context of large qubit arrays for universal quantum computing.
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INTRODUCTION
Of the leading platforms for the implementation of quantum
computing architectures, qubits based on the spin of individual
dopant atoms in silicon1–7 are growing in interest given the nexus
with nanoelectronics engineering and the long coherence
times8,9. For the exchange-based quantum computer design
proposals1,2,10 where the physical separations between atomic
qubits are small (10–15 nm), the pathway for scale-up to large
two-dimensional arrays generally relies on uniformity of control of
qubits and their interactions. Even small variations at the level of
one lattice site for qubits based on single or multiple dopant
atoms can significantly affect the design and control of logical
operations. While the details of few qubit systems can be
determined using electrostatics and electron spin resonance11

and variations in interactions mitigated by designing appropriate
pulse schemes12,13, for large-scale arrays a reliable and fast
method of identification (atom count per qubit) and characterisa-
tion (exact spatial location of atoms in lattice) is critical.
Machine intelligence techniques have been extremely produc-

tive in a wide range of applications, including material design,
medical imaging, and data science, where the design space is
enormously large14–17 and/or autonomous predictions are
required from big data analysis18. In quantum devices, the
application of deep learning for the automated fabrication of
atomic-scale surface defects has been proposed19,20. This work
integrates the high efficiency of machine learning algorithms
towards pattern recognition21 with multi-million-atom simulations
of scanning tunnelling microscopic (STM) images of donor wave
functions22,23 to formulate a theoretical framework with the
capability of high-throughput and automated spatial metrology of
the donor qubits in silicon. The ability to pinpoint the donor
locations with exact atom precision in large two-dimensional

arrays will provide crucial input in the design and implementation
of the fault-tolerant quantum computer architectures.
STM has been extensively used to measure the spatially

resolved images of wave functions corresponding to the
individual subsurface impurity atoms in various semiconductors,
such as group V impurities in silicon22,24, Mn25, and N26,27 atoms in
GaAs and Bi atoms in InP28. Recently, STM imaging technique has
been applied to determine the exact locations of single dopant
atoms in silicon23,29, which has opened new avenues to perform
STM-based qubit characterisation and wave function benchmark-
ing30. The idea underpinning the STM-based dopant position
metrology23 was that the high-resolution images of donor wave
functions exhibit a map of features, in which the brightness and
symmetry of the features directly encodes the information about
the locations of atoms. A direct pixel-by-pixel comparison of a
measured image with a library of theoretically computed STM
images provided direct information about the exact dopant
locations. This rigorous comparison approach worked well for the
individual atoms, but its scalability towards full-scale quantum
computer arrays consisting of O(106) qubits, where each qubit
may consist of small clusters of closely spaced donor atoms, is still
an open problem and requires further development of computa-
tional techniques to efficiently process and characterise several
thousand STM images. This work demonstrates that a machine
learning algorithm when trained on simulated STM images is
capable of characterising atomic-level qubits based on STM
images including noise levels commensurate with the previously
reported measurements. Furthermore, the published high-level
agreement between the theory and experimental measurements
for these STM images23 at the pixel and feature levels opens up
the future possibility of training a machine learning algorithm
over thousands of simulated images, which could then be
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implemented within an experimental set-up. As the generation of
large experimental data sets is a highly tedious task, such transfer
learning approach could provide an efficient pathway for the
large-scale implementation of the spatial metrology technique as
required for scalable quantum computer architectures.
Single-atom STM fabrication techniques4 can achieve the

placement of phosphorus (P) atoms in silicon with accuracy in
position of one lattice site, and the number of P atoms can in
principle be controlled. However, the tunability of exchange
interaction between a single P atom and two closely spaced P
atoms (2P) makes it an attractive qubit system31, and the recent
work has also studied qubits formed by three to four closely
spaced P atoms32. Therefore, the generalisation of the spatial
metrology technique23 beyond single donor atoms will broaden
its scope for a wide range of qubit systems being considered for
quantum computing applications. As the donor count per qubit
increases, the number of available donor placement configura-
tions drastically increase and impose stringent computational
requirements for characterisation of qubits in large-scale devices.
For example, merely increasing the number of dopant atoms per
qubit from one to two leads to an increase in the possible position
configurations from 60 to 1250 within 5 nm depth from the silicon
surface. To enable an autonomous and robust spatial metrology of
single donors and 2P dots in silicon, we perform the training of a
convolutional neural network (CNN). The CNN learns the relation-
ship between STM image features and the corresponding donor
count and the exact spatial positions based on 105 simulated
training images. The testing of the trained CNN over a large test
data set consisting of 17,600 simulated images including noise
demonstrated a highly robust performance with fidelities >98%
across the selected four depth planes. In principle, the donor
atoms can be fabricated with a single target depth plane4, in
which case the qubit characterisation fidelities of 100% are
achievable from the established CNN framework.

Figure 1 provides an overview of the proposed theoretical
framework. To demonstrate the working of our technique, we
have restricted each qubit formation to 1P and 2P configura-
tions. The technique can be readily generalised to larger
clusters consisting of a few closely spaced P atoms per qubit. In
part (a), one electron STM images are computed, where each
image encodes the information about underpinning donor
positions and count. In the next step, the computed STM
images are processed via image reduction algorithms to
increase the computational and storage efficiency of the
machine learning framework. Two complementary methods
are developed for image reduction, namely edge detection and
feature averaging. Both methods drastically enhance the speed
of the CNN. We also introduced various levels of planar and
blurring noise to test the resilience of the trained CNN against
realistic image distortions. Figure 1b illustrates that the
processed STM images are used to train a CNN. The testing of
the trained CNN can be performed based on experimentally
measured data and/or simulated STM images including noise as
shown in Fig. 1c. In this work, we have used simulated STM
images with various levels of blurring and planar noise to test
the performance of the CNN due to the unavailability of
experimental data at present. The computation of the STM
images have previously shown an unprecedented accuracy
when compared directly with the STM measurements23,
capturing both the symmetry and the brightness of the
measured wave function features. Therefore, we expect that
the training and testing of the machine learning framework
performed in this study will be directly applicable to the
experimental data sets available in the future. Figure 1d shows
the output of the CNN, indicating that it can accurately
characterise each qubit by identifying donor count (1P or 2P)
and their exact spatial locations in Si lattice.

Fig. 1 Overview of the automated atomic-level qubit characterisation technique. a A qubit is formed by electrons confined to either a
single donor atom (1P) or a pair of closely spaced atoms (2P) in silicon. Theoretically computed tunnelling current images of one electron
wave functions confined on dopant qubits in silicon are generated. After including the application of noise typical of experimental images,
the images are processed using an edge or feature detection analysis to reduce the computational and storage requirements. b A large set
(100,000) of the processed images is used to train a machine learning algorithm such as a convolutional neural network (CNN). c The testing of
the CNN is performed by generating a new set of 17,600 simulated STM images with varying levels of planar and blurring noise. It is noted
that this work does not include experimental testing; however, the previously reported excellent agreement between theory and
measurements23 imply that the trained ML framework could be directly applied to future experimental data sets. d The trained CNN performs
the exact-atom characterisation of qubits by precisely determining the spatial locations and count of dopant atoms corresponding to each
test image.
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RESULTS AND DISCUSSION
Image classification and symmetry analysis
The STM images are computed by coupling the atomistic tight-
binding calculations of the subsurface phosphorus dopant wave
functions33 with the Bardeen’s tunnelling formalism34 and Chen’s
derivative rule35. Note that we have performed this study for P in
silicon system; however, the developed machine learning frame-
work can also be trained and applied to other group V donor
atoms in silicon. In recent years, advancements in the atomic
precision fabrication techniques4 have led to a donor atom
placement accuracy to within ±a0 in-plane variation for P donors
in silicon, where a0 is the silicon lattice constant. It was also shown
that the donor atoms experience no diffusion along the growth
direction (depth direction) when fabricated with a target depth of
4.75a0

23. In accordance with these published studies, we have
assumed that the two closely spaced dopant atoms in the case of
2P qubits are placed at the same depth from the Si surface.
Furthermore, the distance between the two P atoms is within 2a0.
We note that these are not limiting factors for our technique and
robust qubit characterisation can be performed in the presence of
donor depth variations and/or for larger donor separations.
A systematic labelling scheme was formulated to represent

single donor atoms in silicon crystal23, which is extended in this
work for a general case of qubits, where each qubit can be formed
by either one donor atom (P) or two closely spaced donor atoms
(2P). Note that here 2P is defined as a donor cluster where two
donor atoms are within the 2a0 distance. The schematic diagram
of a small portion of the Si crystal structure is shown in Fig. 2a to
illustrate the possible locations for a dopant atoms to within a few
nanometres from the z= 0 surface. The z= 0 surface is hydrogen
passivated (shown by purple atoms and marked with H) and

exhibits the formation of Si dimer rows (shown by light blue
atoms), which are aligned perpendicular to the page (along the
[110] direction). The area is shaded underneath the dimers to
indicate the positioning of Si atomic sites with respect to the
dimers. In our new notation, we represent each donor atom
location by Li;jmðnÞ and the corresponding STM images by (n, m, i, j),
where n selects a plane group, m∈ {0, 1∕4, 1∕2, 3∕4} represents a
plane within the group at depth d[PGm]= (m+ n)a0, i identifies
the positioning with respect to the surface dimer rows, and j
denotes the individual location(s) of the dopant atom(s) inside a
selected plane defined by (n, m, i). Further details about this
classification scheme are provided in Supplementary Section 1.
For a given target depth based on (n, m), the dopant atoms are

placed in the same plane. The in-plane positioning of the dopant
atoms is shown in Fig. 2b. To demonstrate the working of the
machine learning framework, we have selected four target depths:
4a0, 4.25a0, 4.5a0, 4.75a0, corresponding to n= 4 plane group.
Owing to the symmetry of the silicon crystal, the STM images
exhibit same symmetry for other plane groups, therefore this
particular set of planes at n= 4 represents all types of STM images
that repeat for other values of n23. We have separately plotted six
planes corresponding to n= 4. Note that for m= 0 and 1/4, we
have only plotted one value of i (1 and 3). The positions
corresponding to i= 2 and 4 are at the other edge of the dimer
rows and symmetrically similar to the positions at i= 1 and 3,
respectively. This will result in exactly the same STM images,
rotated by 270°. The exact positions corresponding to these
images can be determined by overlaying dimer row atoms23. In
our classification scheme, we assume that one dopant atom is
always at the centre marked by j= 0. The second donor in the
case of 2P will occupy one of the locations at the boundaries of

Fig. 2 Symmetry analysis and classification of the computed STM images. a Schematic diagram of a small portion of the silicon lattice is
shown, along with the positioning of the P donor atoms within a few nanometres of the z= 0 surface. The z= 0 surface is hydrogen
passivated (purple atoms) and exhibits the formation of Si dimer rows (light blue atoms at z= 0), which are aligned perpendicular to the page
(along the [110] direction). The area is shaded underneath the dimers to provide guidance on the positioning of atomic sites with respect to
the dimers. b Based on symmetry of donor positions with respect to the location of surface dimer rows, six planes at n= 4 are shown
highlighting possible locations for donor atom placement. In each plane, the positioning of donor atoms is labelled by a number j, whose
value varies from 0 to 24 as shown for m= 0 and i= 1 case. The position labels are same for the other five (n, m) cases. The central atom is
marked as j= 0 and the numbering in the inner ring is from 1 to 8 and in the outer ring is from 9 to 24 clockwise. c Theoretically computed
STM images are plotted for all possible positions (j= 0, 1, 2, ..., 24) at n= 4, m= 3/4, and i= 7. The images clearly exhibit a well-defined
symmetry of wave function features convoluted with the surface dimer positions. Based on the symmetry analysis, we find that the 2P images
are identical when the second P atom is symmetrically distributed around the reference P atom at j= 0. All distinct images are highlighted by
a red coloured boundary.
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the two diamonds with distances a0 and 2a0 from the centre
dopant atom. These positions are labelled anti-clockwise from j=
1–8 for the inner diamond and j= 9–24 for the outer diamond as
illustrated for (n, m, i)= (4, 0, 1) in Fig. 2b. Note that, in each plane,
the atom position at j= 0 is same as the i value in that plane.
Based on the dopant locations plotted in Fig. 2b, each dopant

plane offers 25 possible configurations to place P/2P donor atoms,
leading to 25 STM images. For the n= 4 plane group, we
computed in total 125 STM images. Figure 2c plots the STM
images for one selected plane corresponding to m= 3/4 and i= 7.
Each STM image is labelled with the corresponding value of j. The
STM images for the other five configurations are provided in
Supplementary Figs 1–5.
From Fig. 2b, we note that a number of dopant positions are

equivalent due to their symmetrical distance from the centre
location at j= 0. This implies that the corresponding STM images
would also exhibit the same feature map with a possible rotation
or reflection with respect to the axes parallel or normal to the
dimer rows direction. For example, in Fig. 2c, the images
corresponding to j= 4 and j= 8 will be same if one of them is
reflected with respect to the diagonal direction as shown in
Supplementary Fig. 6. A careful examination of all images for (4, 3/4,
7, j) reveals that, out of the 25 images, only 9 images are distinct.
We classify the 25 images for the (4, 3/4, 7, j) group in 9 distinct
image classes in Supplementary Table 1. Further details about the
classification of the STM images in distinct image classes is
provided in Supplementary Section 1. Each class has been labelled
by (m, n, i, min(j)), where min(j) is the minimum value of j in that
class. For n= 4, there are 50 distinct image classes. The 50 images
representing the distinct classes are highlighted by the red colour
boundaries in Fig. 2c and also in Supplementary Figs 1–5. The
machine learning framework recognises dopant positions and
count based on the feature maps, therefore it will only identify
images with respect to these 50 classes. For example, in Fig. 2c,

the images corresponding to the positions j= 1, 3, 5, and 7 will be
assigned to the same image class (3/4, 4, 7, 1). The determination
of the exact dopant locations within an image class can be
subsequently performed based on its relative symmetry with
respect to the positions of the surface dimer rows, which can be
done by overlaying dimer atom positions on top of the image.

Application of noise and image size reduction
The computed STM images demonstrate a perfect symmetry and
sharp bright features, whereas the published measured
images22,23,29 may consists of features that are asymmetrical in
brightness and/or blurred around the edges. In order to test the
resiliency of the machine learning framework in the presence of
feature asymmetry and blurriness, we artificially apply a range of
two types of noise to the computed images. A planar noise (σP)
leads to an asymmetry of the features and a blurring noise (σB)
causes the features to spread across their edges, making adjacent
features harder to distinguish. The computation of noise and its
application to the exemplary images is provided in Supplementary
Section 2. Supplementary Figs 8 and 12 plot computed STM
images as a function of various strengths of the planar and
blurring noise, respectively. Based on the plotted images, we infer
that σP ≤ 0.4 and σB ≤ 4.0 are the reasonable range of noise
strengths beyond which the computed STM images become
significantly distorted and cannot be accurately recognised. As
part of the STM image preparation process, the application of
noise is performed in the second step as illustrated in Fig. 3a.
After the addition of noise, the computed STM images are

further processed to reduce their size. The size of a computed
image is 535 × 535 pixels, which is quite large for the purpose of
training and testing of a machine learning framework, which
generally requires processing of several thousand images (105

training and 17,600 test images in our study). To reduce the

Fig. 3 Flow chart diagram of machine learning framework. a For the demonstration of the working of our machine learning framework, we
have selected one STM image corresponding to n= 4, m= 3/4, i= 7, and j= 2. The STM image is converted from RGB colour plot to greyscale
colour plot to reduce the storage size. The STM image is further processed to extract either edges of the bright features or based on the
average values over each bright feature (see Supplementary Sections 3 and 4 for details). b Kernels are shown with size 32 (3 × 3) and 16 (2 × 2)
for the edge detection and the feature averaging schemes, respectively. Each training image is convoluted with the kernels to generate a set
of 32 or 16 convoluted images. The convoluted images are used to train a neural network with one input layer, one hidden layer, and one
output layer. The outcomes of the trained neural network classifies the STM images in accordance with the exact donor atom positions
and count.
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computational burden, we apply image reduction steps. Each
coloured pixel represented by the RGB format is first converted to
the greyscale format. We note that the STM images are computed
over a large area (8 × 8 nm2); however, the area around the
features is dark indicating negligible tunnelling current. As the
information about the donor positions is encoded in the bright
features, we crop the dark region to further reduce the image
sizes. This is done by first rotating the image clockwise by 45° and
then removing the pixels with the tunnelling current values below
a threshold value. Further details of this process are provided in
Supplementary Sections 3 and 4, along with Supplementary Figs.
13 and 14. At the end of this process, the image size is reduced
from 535 × 535 pixels to about 237 × 189 pixels.
The information about the donor positions is present in the size,

arrangement, and brightness of the image features. It is noted that
each image consists of 20–30 bright features, which distinctly
describe the corresponding position(s) and count of dopant atom
(s). To further reduce the size of an image, we focus on the bright
features and apply two techniques to extract the feature
properties while preserving the donor position information. The
first method that focusses on the shape of the features is called
feature edges in Fig. 3a. Further details about this method are
described in Supplementary Section 3. In this technique, we apply
a filter operation that extracts the edges of the features. The
image is then 3 × 3 sub-sampled or max-pooled to obtain a final
image consisting of about 79 × 63 pixels. Note that in this method,
each image is of slightly different size based on the number of
features and their spatial distributions. Overall, the size of the
computed images after the edge detection processing is always
below 90 × 90 for all the images studied in this work.
The second method is labelled as feature averages in Fig. 3a

and is described in detail in Supplementary Section 4. In this
scheme, we represent each feature by its overall average
brightness with respect to the dimer positions. This drastically
reduces the size of an image to 11 × 10 pixels. Moreover, the size
of the final processed images is also fixed for all cases. We do not
apply any max-pooling function to feature averaged images.
Following the image processing steps, we train and test a machine
learning framework for both methods separately. A comparison is
performed between the two image reduction schemes based on
the computational efficiency and robustness against the applica-
tion of noise.

Training of the CNN
The processed STM images are used to train a CNN. The robust
training of a CNN generally requires a very large data set, typically
consisting of sample spaces with O(103) sizes. We used ideal
images and the images with various levels of planar noise (σP) to
train the CNN. To construct a sufficiently large training data set, we
randomly vary σP between 0 and 0.4 and compute 2000 images
corresponding to each of the 50 classes, accumulating a library of
105 training images. These images are separately processed
through the edge detection and feature averaging schemes and
are used to train two independent CNNs with one input, one
hidden, and one output layers.
Figure 3b displays the work flow of the CNN for the established

high-throughput qubit characterisation scheme. Each image in the
training data set is passed through the convolution layer before
setting up the CNN. In the case of the edge detection scheme, the
CNN consists of a convolutional layer with 32, 3 × 3 kernels along
with 2 × 2 max-pooling, followed by a hidden layer of 256 rectified
linear units (ReLu) activated neurons. The images are scaled to
48 × 48 pixels. Training on 105 images with 30 epochs achieved a
learning accuracy of >99.5% and completed in about 5 h on an
average desktop machine. For the case of the feature averaging
scheme, a hidden layer of 64 ReLu activated neurons, and the
training was performed on 105 images with 20 epochs, which was

completed in about 30 min on an average desktop machine and
resulted in a learning accuracy of 100%. In both cases, the output
layer is a densely connected layer with Softmax activation
function. The CNN was compiled based on the Adam algorithm36

with the learning rate of 104 and the categorical cross-entropy for
optimisation and as the loss function, respectively. The number of
neurons is optimised by testing out various configurations of the
CNN, and a sufficiently low number of neurons that will maintain
the near perfect learning is chosen. The implementation of the
CNN was performed by using Keras37, utilising TensorFlow as the
underlying platform38.

Qubit characterisation fidelities including noise
To test the performance of the machine learning framework, we
define two parameters as the fidelity (f) of the qubit characterisa-
tion and the confidence level (CL). For a given test image, the
trained CNN returns a set of 50 values (between 0 and 1), where
each value indicates CL for that image to be in 1 of the 50 image
classes. The test image is characterised as belonging to a particular
image class based on the highest CL value. If the highest CL
correctly identifies the image class, it is assigned a value of f= 1,
otherwise f= 0. To test the robustness of the CNN, we prepared
three separate test sets for both the edge detection and the
feature averaging schemes. The first test set consists of 50 ideal
STM images without the application of noise and the trained
machine learning framework resulted in f= 1 with CL= 1 for all
images. This confirmed that the CNN has been properly trained
based on the prepared training images.
The second case consisted of test images after the application

of blurring noise only for both the edge detection and the feature
averaging schemes. To establish a sufficiently large test set, we
arbitrarily selected 16 STM image classes (see Supplementary
Section 5 and Supplementary Fig. 15 for details) and applied the
blurring noise (σB) with its strength varying from 0 to 5.0 pixels
with an increment of 0.5. At each value of σB, its orientation is
randomly varied and 100 images are computed. The total test set
consisted of 17,600 STM images from the 16 classes. In
Supplementary Figs. 16 and 17, we have plotted the percentage
of fidelity values (number of correctly classified images out of the
100 noisy images) obtained from the CNN for each image class
independently. Figure 4a plots the average values computed from
the 1600 images (16 classes × 100 noise orientations) at each
value of σB. The error bars indicate two standard deviations of the
mean value. As expected, fidelities decrease when σB increases
and the images become harder to recognise. Based on the plotted
results, we infer that the feature averaging scheme provides much
higher fidelities compared to the edge detection scheme for large
values of σB. The higher fidelity values for the feature averaging
scheme are also coupled with about an order of magnitude better
computational efficiency and two orders of magnitude lower
storage requirements. Therefore, we conclude that the feature
averaging scheme offers superior performance for the established
machine learning-based qubit characterisation compared to the
edge detection scheme. Interestingly, we find that the fidelity
drop varies between different image classes and some images
offer very high resiliency against the application of σB. This
information may provide a useful input for the selection of a
target depth during donor atom fabrication processes incorporat-
ing this autonomous characterisation scheme.
In the final test set, we simultaneously apply both planar and

blurring noise to the set of STM images plotted in Supplementary
Fig. 15. In the case of the edge detection scheme, we randomly
vary noise orientation and strength from 0 ≤ σP ≤ 0.4 and 0 ≤ σB ≤
2.0 range, whereas for the feature average scheme, we randomly
vary noise levels from 0 ≤ σP ≤ 0.4 and 0 ≤ σB ≤ 4.0 due to its higher
resiliency against the application of σB. The final processed images
including noise are shown in Fig. 4b, c. For both image-reduction
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schemes, the CNN characterises each image correctly (f= 1), with
the CL values shown in the figure. Based on these results, we
conclude that the CNN has been trained to accurately identify the
STM images in the presence of both planar and blurring noise.

Summary and outlook
In summary, this work takes a first step towards implementation of
a machine learning framework for autonomous characterisation of
a large-scale quantum computer architectures based on dopant
impurities in silicon. The input to the established framework are
simulated STM images of one electron wave functions confined on
single dopants or on small clusters of closely spaced dopants. The
images are processed to optimise the exploitation of information
known about the system (e.g. lattice geometry and surface
dimers) and to reduce computational burden by developing and
applying two feature-detection methods, namely edge detection
and feature averages. Our results showed that both feature-
detection methods enable high-fidelity qubit characterisation at
low noise level, with the feature averaging method providing
considerably superior performance in the presence of large
blurring noise. A CNN is trained to characterise the noisy STM
images and pinpoint the corresponding dopant atom position(s)
and count with an exact lattice site precision. For the purpose of
demonstrating the working of the established methods, the CNN
was trained and tested on simulated STM images, including noise
levels commensurate with the published measurements. We note
that the computed STM images have previously shown an
extremely good agreement with the measured images at both
pixel-by-pixel and feature-by-feature levels23, therefore we expect
that the trained CNN will be able to characterise experimental
images with an accuracy equivalent to the simulated images with
noise. As the training of CNN requires several thousand images,
the capability to train based on simulated images eliminates the
need for performing large-scale experimental measurement,
saving a lot of time and effort.
A second outcome of this work is that the trained ML

framework enables the pinpointing of dopant locations in the
donor-dot qubits consisting of two dopant atoms in the nearest-

neighbour and second nearest-neighbour configurations. Given
the considerable recent interest in donor-dot qubits for two-qubit
exchange-based quantum gates39, this work significantly broad-
ens the scope of the established spatial metrology technique,
which was previously demonstrated for qubits made up of single
impurity atoms only23. We note that, in this work, the image
classification was performed by implementing a CNN. The
selection of the CNN technique was based on its recent success
for the experimental work on silicon dangling bond qubits19 and
electronic quantum matter visualisation40. In our study, the
training of the CNN over 100,000 STM images worked efficiently,
attaining a learning of 99.5% in about 5 h on an average desktop
machine. In this proof-of-concept work, we have shown that the
CNN approach has been very effective; in future work, a
comparative study might be carried out of the application of
other machine learning techniques such as support vector
machine and random forest classifier scheme to this problem.
The established automated characterisation of atomic qubits

with such a high level of accuracy will assist in the design and
implementation of two-qubit quantum gates. The underpinning
experimental expertise, the atomic-precision fabrication of dopant
atoms in silicon via STM lithography4, and the STM images of
dopant wave functions by low-temperature tunnelling of single
electron22 has already been demonstrated. Augmentation of the
formulated machine learning set-up with these experimental
techniques is expected to enable high-throughput characterisa-
tion post-fabrication with minimal human interaction. We envision
that, as the number of qubits in quantum devices grows, the
characterisation by direct quantum measurements will be
increasingly onerous, and a fast, reliable, and autonomous
methodology may play a crucial role in the scale-up process.

METHODS
Tight-binding wave function calculations
The computation of phosphorus dopant wave functions is performed by
solving an atomistic sp3d5s* tight-binding Hamiltonian41. The P donor
atom is placed in a large silicon box consisting of roughly four million
atoms. The confining potential on the P atom is represented by a

Fig. 4 Test results from the machine learning framework. a The average fidelities from the CNN are plotted as a function of σB. At each value
of σB, the average fidelity is computed based on 1600 test images (16 classes and 100 images per class). The error bars indicate two standard
deviations of the mean value. b A set of 16 processed STM images are shown after the application of the edge detection procedure to test the
working of the trained CNN. The images are applied random strengths of noise selected from 0 ≤ σP ≤ 0.4 and 0 ≤ σB ≤ 2.0 range. The
corresponding unprocessed STM images are provided in Supplementary Fig. 15. In each case, the CNN correctly identifies the donor positions
and count with the CL values as provided on top of the images. c A set of 16 processed STM images are shown after the application of the
feature averaging procedure to test the working of the trained CNN. The images are applied random strengths of noise selected from 0 ≤ σP ≤
0.4 and 0 ≤ σB ≤ 4.0 range. The corresponding unprocessed STM images are provided in Supplementary Fig. 15. In each case, the CNN correctly
identifies the donor positions and count with the CL values as provided on top of the images.
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comprehensive description of the central-cell effects, which include non-
static dielectric screening of donor potential33:

U rð Þ ¼ �e2

ϵ 0ð Þr 1þ Aϵ 0ð Þe�αr þ 1� Að Þϵ 0ð Þe�βr � e�γr
� �

(1)

where A, α, β, and γ are fitting constants and have been numerically fitted
as described in the literature42. In addition, the nearest-neighbour bond
lengths of Si:P are strained by 1.9% in accordance with the recent density
functional theory study43. The value of U0 at the donor atom site is
adjusted to empirically fit the binding energies of 1s manifold of states44.
The calculation of wave functions also included the effect of 2 × 1 surface
reconstruction, leading to the formation of dimer rows at the z=
0 surface23,45. The impact of the surface strain due to the 2 × 1
reconstruction is included in the tight-binding Hamiltonian by a general-
isation of the Harrison’s scaling law, where the inter-atomic interaction
energies are modified with the strained bond length d as ðd0d Þ

η
, where d0 is

the unperturbed bond length of Si lattice and η is a scaling parameter
whose magnitude depends on the type of the interaction being
considered and is fitted to obtain hydrostatic deformation potentials41.
The boundary conditions for the silicon box are selected as closed, with
dangling bond energies shifted by large values to exclude their effect in
the working range of energy46. The theoretical calculations were
performed using the NEMO-3D framework47,48.

Computation of STM Images
The computation of the STM images is performed by coupling the
atomistic tight-binding wave function calculation with the Bardeen’s
tunnelling current formalism34. The wave function is decayed in the
vacuum region above the reconstructed silicon surface based on the Slater
orbital real-space representation49. For the calculation of the tunnelling
current, the dominant contribution has been found to come from the
dz2�1

3r
2 tip orbital23, which is computed by applying the derivative rule

reported by Chen35:

ITðr0Þ / 2
3
∂2ΨDðrÞ
∂z2

� 1
3
∂2ΨDðrÞ
∂y2

� 1
3
∂2ΨDðrÞ
∂x2

����

����

2

r0

(2)

where ΨD is the donor wave function and r0 is the position of the STM tip.
Each computed STM image is spanned over 8 × 8 nm2 area and consists

of about 535 × 535 pixels represented in the RGB colour scheme.

DATA AVAILABILITY
The data that support the findings of this study are available within the article and its
Supplementary Information File. Further requests can be made to the corresponding
author.
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