204 research outputs found

    Whole-genome amplified DNA from stored dried blood spots is reliable in high resolution melting curve and sequencing analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of dried blood spots (DBS) samples in genomic workup has been limited by the relative low amounts of genomic DNA (gDNA) they contain. It remains to be proven that whole genome amplified DNA (wgaDNA) from stored DBS samples, constitutes a reliable alternative to gDNA.</p> <p>We wanted to compare melting curves and sequencing results from wgaDNA derived from DBS samples with gDNA derived from whole blood.</p> <p>Methods</p> <p>gDNA was extracted from whole blood obtained from 10 patients with lone atrial fibrillation (mean age 22.3 years). From their newborn DBS samples, stored at -24°C, genomic DNA was extracted and whole-genome amplified in triplicates. Using high resolution melting curve analysis and direct sequencing in both wgaDNA and gDNA samples, all coding regions and adjacent intron regions of the genes <it>SCN5A </it>and <it>KCNA5 </it>were investigated.</p> <p>Results</p> <p>Altered melting curves was present in 85 of wgaDNA samples and 81 of gDNA samples. Sequence analysis identified a total of 31 variants in the 10 wgaDNA samples. The same 31 variants were found in the exact same pattern of samples in the gDNA group. There was no false positive or negative sequence variation in the wgaDNA group.</p> <p>Conclusions</p> <p>The use of DNA amplified in triplicates from DBS samples is reliable and can be used both for high resolution curve melting analysis as well as direct sequence analysis. DBS samples therefore can serve as an alternative to whole blood in sequence analysis.</p

    Risk of schizophrenia in relation to parental origin and genome-wide divergence

    Get PDF
    Background. Second-generation immigrants have an increased risk of schizophrenia, a finding that still lacks a satisfactory explanation. Various operational definitions of second-generation immigrants have been used, including foreign parental country of birth. However, with increasing global migration, it is not clear that parental country of birth necessarily is informative with regard to ethnicity. We compare two independently collected measures of parental foreign ethnicity, parental foreign country of birth versus genetic divergence, based on genome-wide genotypic data, to access which measure most efficiently captures the increased risk of schizophrenia among second-generation immigrants residing in Denmark. Method. A case-control study covering all children born in Denmark since 1981 included 892 cases of schizophrenia and 883 matched controls. Genetic divergence was assessed using principal component analyses of the genotypic data. Independently, parental foreign country of birth was assessed using information recorded prospectively in the Danish Civil Registration System. We compared incidence rate ratios of schizophrenia associated with these two independently collected measures of parental foreign ethnicity. Results. People with foreign-born parents had a significantly increased risk of schizophrenia [relative risk (RR) 1.94 (95% confidence intervals (CI) 1.41-2.65)]. Genetically divergent persons also had a significant increased risk [RR 2.43 ( 95% CI 1.55-3.82)]. Mutual adjustment of parental foreign country of birth and genetic divergence showed no difference between these measures with regard to their potential impact on the results. Conclusions. In terms of RR of schizophrenia, genetic divergence and parental foreign country of birth are interchangeable entities, and both entities have validity with regard to identifying second-generation immigrants

    Genome-wide scans using archived neonatal dried blood spot samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identification of disease susceptible genes requires access to DNA from numerous well-characterised subjects. Archived residual dried blood spot samples from national newborn screening programs may provide DNA from entire populations and medical registries the corresponding clinical information. The amount of DNA available in these samples is however rarely sufficient for reliable genome-wide scans, and whole-genome amplification may thus be necessary. This study assess the quality of DNA obtained from different amplification protocols by evaluating fidelity and robustness of the genotyping of 610,000 single nucleotide polymorphisms, using the Illumina Infinium HD Human610-Quad BeadChip. Whole-genome amplified DNA from 24 neonatal dried blood spot samples stored between 15 to 25 years was tested, and high-quality genomic DNA from 8 of the same individuals was used as reference.</p> <p>Results</p> <p>Using 3.2 mm disks from dried blood spot samples the optimal DNA-extraction and amplification protocol resulted in call-rates between 99.15% – 99.73% (mean 99.56%, N = 16), and conflicts with reference DNA in only three per 10,000 genotype calls.</p> <p>Conclusion</p> <p>Whole-genome amplified DNA from archived neonatal dried blood spot samples can be used for reliable genome-wide scans and is a cost-efficient alternative to collecting new samples.</p

    Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci.

    Get PDF
    Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all individuals born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs) and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases and 882 controls, and the follow-up investigation of the top GWA results was performed in independent Danish (1396 cases and 1803 controls) and German-Dutch (1169 cases, 3714 controls) samples. The SNPs most strongly associated in the single-marker analysis of the combined Danish samples were rs4757144 in ARNTL (P=3.78 × 10(-6)) and rs8057927 in CDH13 (P=1.39 × 10(-5)). Both genes have previously been linked to schizophrenia or other psychiatric disorders. The strongest associated SNP in the combined analysis, including Danish and German-Dutch samples, was rs12922317 in RUNDC2A (P=9.04 × 10(-7)). A region-based analysis summarizing independent signals in segments of 100 kb identified a new region-based genome-wide significant locus overlapping the gene ZEB1 (P=7.0 × 10(-7)). This signal was replicated in the follow-up analysis (P=2.3 × 10(-2)). Significant interaction with maternal CMV infection was found for rs7902091 (P(SNP × CMV)=7.3 × 10(-7)) in CTNNA3, a gene not previously implicated in schizophrenia, stressing the importance of including environmental factors in genetic studies

    Polygenic risk score, parental socioeconomic status, family history of psychiatric disorders, and the risk for schizophrenia: a Danish population-based study and meta-analysis

    Get PDF
    IMPORTANCE Schizophrenia has a complex etiology influenced both by genetic and nongenetic factors but disentangling these factors is difficult. OBJECTIVE To estimate (1) how strongly the risk for schizophrenia relates to the mutual effect of the polygenic risk score, parental socioeconomic status, and family history of psychiatric disorders; (2) the fraction of cases that could be prevented if no one was exposed to these factors; (3) whether family background interacts with an individual's genetic liability so that specific subgroups are particularly risk prone; and (4) to what extent a proband's genetic makeup mediates the risk associated with familial background. DESIGN, SETTINGS, AND PARTICIPANTS We conducted a nested case-control study based onDanish population-based registers. The study consisted of 866 patients diagnosed as having schizophrenia between January 1, 1994, and December 31, 2006, and 871 matched control individuals. Genome-wide data and family psychiatric and socioeconomic background information were obtained from neonatal biobanks and national registers. Results from a separate meta-analysis (34 600 cases and 45 968 control individuals) were applied to calculate polygenic risk scores. EXPOSURES Polygenic risk scores, parental socioeconomic status, and family psychiatric history. MAIN OUTCOMES AND MEASURES Odds ratios (ORs), attributable risks, liability R2 values, and proportions mediated. RESULTS Schizophrenia was associated with the polygenic risk score (OR, 8.01; 95%CI, 4.53-14.16 for highest vs lowest decile), socioeconomic status (OR, 8.10; 95%CI, 3.24-20.3 for 6 vs no exposures), and a history of schizophrenia/psychoses (OR, 4.18; 95%CI, 2.57-6.79). The R2 values were 3.4%(95%CI, 2.1-4.6) for the polygenic risk score, 3.1%(95%CI, 1.9-4.3) for parental socioeconomic status, and 3.4%(95%CI, 2.1-4.6) for family history. Socioeconomic status and psychiatric history accounted for 45.8% (95%CI, 36.1-55.5) and 25.8% (95%CI, 21.2-30.5) of cases, respectively. There was an interaction between the polygenic risk score and family history (P = .03). A total of 17.4%(95%CI, 9.1-26.6) of the effect associated with family history of schizophrenia/psychoses was mediated through the polygenic risk score. CONCLUSIONS AND RELEVANCE Schizophrenia was associated with the polygenic risk score, family psychiatric history, and socioeconomic status. Our study demonstrated that family history of schizophrenia/psychoses is partly mediated through the individual's genetic liability

    Elevated polygenic burden for autism is associated with differential DNA methylation at birth

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this record.Autism spectrum disorder (ASD) is a severe neurodevelopmental disorder characterized by deficits in social communication and restricted, repetitive behaviors, interests, or activities. The etiology of ASD involves both inherited and environmental risk factors, with epigenetic processes hypothesized as one mechanism by which both genetic and non-genetic variation influence gene regulation and pathogenesis. The aim of this study was to identify DNA methylation biomarkers of ASD detectable at birth.This study was supported by grant HD073978 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Environmental Health Sciences, and National Institute of Neurological Disorders and Stroke; and by the Beatrice and Samuel A. Seaver Foundation. We acknowledge iPSYCH and The Lundbeck Foundation for providing samples and funding. The iPSYCH (The Lundbeck Foundation Initiative for Integrative Psychiatric Research) team acknowledges funding from The Lundbeck Foundation (grant numbers R102-A9118 and R155–2014-1724), the Stanley Medical Research Institute, the European Research Council (project number 294838), the Novo Nordisk Foundation for supporting the Danish National Biobank resource, and grants from Aarhus and Copenhagen Universities and University Hospitals, including support to the iSEQ Center, the GenomeDK HPC facility, and the CIRRAU Center. This research has been conducted using the Danish National Biobank resource, supported by the Novo Nordisk Foundation. JM is supported by funding from the UK Medical Research Council (MR/K013807/1) and a Distinguished Investigator Award from the Brain & Behavior Research Foundation. The SEED study was supported by Centers for Disease Control and Prevention (CDC) Cooperative Agreements announced under the RFAs 01086, 02199, DD11–002, DD06–003, DD04–001, and DD09–002 and the SEED DNA methylation measurements were supported by Autism Speaks Award #7659 to MDF. SA was supported by the Burroughs-Wellcome Trust training grant: Maryland, Genetics, Epidemiology and Medicine (MD-GEM). The SSC was supported by Simons Foundation (SFARI) award and NIH grant MH089606, both awarded to STW

    Variable DNA methylation in neonates mediates the association between prenatal smoking and birth weight

    Get PDF
    There is great interest in the role epigenetic variation induced by non-genetic exposures may play in the context of health and disease. In particular, DNA methylation has previously been shown to be highly dynamic during the earliest stages of development and is influenced by in utero exposures such as maternal smoking and medication. In this study we sought to identify the specific DNA methylation differences in blood associated with prenatal and birth factors, including birth weight, gestational age and maternal smoking. We quantified neonatal methylomic variation in 1263 infants using DNA isolated from a unique collection of archived blood spots taken shortly after birth (mean = 6.08 days; s.d. = 3.24 days). An epigenome-wide association study (EWAS) of gestational age and birth weight identified 4299 and 18 differentially methylated positions (DMPs) respectively, at an experiment-wide significance threshold of p < 1 × 10-7. Our EWAS of maternal smoking during pregnancy identified 110 DMPs in neonatal blood, replicating previously reported genomic loci, including AHRR. Finally, we tested the hypothesis that DNA methylation mediates the relationship between maternal smoking and lower birth weight, finding evidence that methylomic variation at three DMPs may link exposure to outcome. These findings complement an expanding literature on the epigenomic consequences of prenatal exposures and obstetric factors, confirming a link between the maternal environment and gene regulation in neonates. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.This study was supported by grant no. HD073978 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Environmental Health Sciences, and National Institute of Neurological Disorders and Stroke; and by the Beatrice and Samuel A. Seaver Foundation. The iPSYCH (The Lundbeck Foundation Initiative for Integrative Psychiatric Research) team acknowledges funding from The Lundbeck Foundation (grant no. R102-A9118 and R155-2014-1724), the Stanley Medical Research Institute, the European Research Council (project no: 294838), the Novo Nordisk Foundation for supporting the Danish National Biobank resource, and grants from Aarhus and Copenhagen Universities and University Hospitals, including support to the iSEQ Center, the GenomeDK HPC facility, and the CIRRAU Center. This research has been conducted using the Danish National Biobank resource, supported by the Novo Nordisk Foundation. J.M. and E.H. are supported by funding from the UK Medical Research Council (K013807).published version, accepted version, submitted versio

    Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci

    Get PDF
    Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all individuals born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs) and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases and 882 controls, and the follow-up investigation of the top GWA results was performed in independent Danish (1396 cases and 1803 controls) and German-Dutch (1169 cases, 3714 controls) samples. The SNPs most strongly associated in the single-marker analysis of the combined Danish samples were rs4757144 in ARNTL (P=3.78 × 10 -6) and rs8057927 in CDH13 (P=1.39 × 10 -5). Both genes have previously been linked to schizophrenia or other psychiatric disorders. The strongest associated SNP in the combined analysis, including Danish and German-Dutch samples, was rs12922317 in RUNDC2A (P=9.04 × 10 -7). A region-based analysis summarizing independent signals in segments of 100 kb identified a new region-based genome-wide significant locus overlapping the gene ZEB1 (P=7.0 × 10 -7). This signal was replicated in the follow-up analysis (P=2.3 × 10 -2). Significant interaction with maternal CMV infection was found for rs7902091 (P SNP × CMV =7.

    Blood spots as an alternative to whole blood collection and the effect of a small monetary incentive to increase participation in genetic association studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Collection of buccal cells from saliva for DNA extraction offers a less invasive and convenient alternative to venipuncture blood collection that may increase participation in genetic epidemiologic studies. However, dried blood spot collection, which is also a convenient method, offers a means of collecting peripheral blood samples from which analytes in addition to DNA can be obtained.</p> <p>Methods</p> <p>To determine if offering blood spot collection would increase participation in genetic epidemiologic studies, we conducted a study of collecting dried blood spot cards by mail from a sample of female cancer cases (n = 134) and controls (n = 256) who were previously selected for a breast cancer genetics study and declined to provide a venipuncture blood sample. Participants were also randomized to receive either a 2.00billornoincentivewiththebloodspotcollectionkits.</p><p>Results</p><p>Theaveragetimebetweenthevenipuncturesamplerefusalandrecruitmentforthebloodspotcollectionwas4.4years.Thirtysevenpercentofcasesand282.00 bill or no incentive with the blood spot collection kits.</p> <p>Results</p> <p>The average time between the venipuncture sample refusal and recruitment for the blood spot collection was 4.4 years. Thirty-seven percent of cases and 28% of controls provided a dried blood spot card. While the incentive was not associated with participation among controls (29% for 2.00 incentive vs. 26% for no incentive, p = 0.6), it was significantly associated with participation among the breast cancer cases (48% vs. 27%, respectively, p = 0.01). There did not appear to be any bias in response since no differences between cases and controls and incentive groups were observed when examining several demographic, work history and radiation exposure variables.</p> <p>Conclusion</p> <p>This study demonstrates that collection of dried blood spot cards in addition to venipuncture blood samples may be a feasible method to increase participation in genetic case-control studies.</p
    corecore