36 research outputs found

    Laser time-transfer and space-time reference in orbit

    Full text link
    A high performance Space-Time Reference in orbit could be realized using a stable atomic clock in a precisely defined orbit and linking that to high accuracy atomic clocks on the ground using a laser based time-transfer link. This would enhance performance of existing systems and provide unique capabilities in navigation, precise timing, earth sciences, geodesy and the same approach could provide a platform for testing fundamental physics in space. Precise laser time- and frequency-transfer from the ground to an orbiting satellite would make it possible to improve upon the current state of the art in timing (about 1 to 30 ns achieved with GPS) by roughly a factor of 1000 to the 1 ps level.Comment: Presented at the Sixth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 17-21, 201

    Stable isotopic analysis of atmospheric methane by infrared spectroscopy by use of diode laser difference-frequency generation

    Get PDF
    An infrared absorption spectrometer has been constructed to measure the stable isotopic composition of atmospheric methane samples. The spectrometer employs periodically poled lithium niobate to generate 15 μW of tunable difference-frequency radiation from two near-infrared diode lasers that probe the ν3 rotational-vibrational band of methane at 3.4 μm. To enhance the signal, methane is extracted from 25 l of air by use of a cryogenic chromatographic column and is expanded into the multipass cell for analysis. A measurement precision of 12‰ is demonstrated for both δ13C and δD

    Resonant interaction of trapped cold atoms with a magnetic cantilever tip

    Full text link
    Magnetic resonance in an ensemble of laser-cooled trapped Rb atoms is excited using a micro- cantilever with a magnetic tip. The cantilever is mounted on a multi-layer chip designed to capture, cool, and magnetically transport cold atoms. The coupling is observed by measuring the loss from a magnetic trap as the oscillating cantilever induces Zeeman state transitions in the atoms. Interfacing cold atoms with mechanical devices could enable probing and manipulating atomic spins with nanometer spatial resolution and single-spin sensitivity, leading to new capabilities in quantum computation, quantum simulation, or precision sensing.Comment: 5 pages, 4 figure

    Femtosecond frequency comb measurement of absolute frequencies and hyperfine coupling constants in cesium vapor

    Full text link
    We report measurements of absolute transition frequencies and hyperfine coupling constants for the 8S_{1/2}, 9S_{1/2}, 7D_{3/2}, and 7D_{5/2} states in ^{133}Cs vapor. The stepwise excitation through either the 6P_{1/2} or 6P_{3/2} intermediate state is performed directly with broadband laser light from a stabilized femtosecond laser optical-frequency comb. The laser beam is split, counter-propagated and focused into a room-temperature Cs vapor cell. The repetition rate of the frequency comb is scanned and we detect the fluorescence on the 7P_{1/2,3/2} -> 6S_{1/2} branches of the decay of the excited states. The excitations to the different states are isolated by the introduction of narrow-bandwidth interference filters in the laser beam paths. Using a nonlinear least-squares method we find measurements of transition frequencies and hyperfine coupling constants that are in agreement with other recent measurements for the 8S state and provide improvement by two orders of magnitude over previously published results for the 9S and 7D states.Comment: 14 pages, 14 figure

    Effect of atmospheric anisoplanatism on earth-to-satellite time transfer over laser communication links

    Get PDF
    © 2017 [2017 Optical Society of America.]. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.The need for an accurate time reference on orbiting platforms motivates study of time transfer via free-space optical communication links. The impact of atmospheric turbulence on earth-to-satellite optical time transfer has not been fully characterized, however. We analyze limits to two-way laser time transfer accuracy posed by anisoplanatic non-reciprocity between uplink and downlink. We show that despite limited reciprocity, two- way time transfer can still achieve sub-picosecond accuracy in realistic propagation scenarios over a single satellite visibility period.Peer ReviewedPostprint (published version

    Quenched narrow-line second- and third-stage laser cooling of 40Ca

    Get PDF
    We demonstrate three-dimensional (3-D) quenched narrow-line laser cooling and trapping of 40Ca. With 5 ms of cooling time we can transfer 28 % of the atoms from a magneto-optic trap based on the strong 423 nm cooling line to a trap based on the narrow 657 nm clock transition (that is quenched by an intercombination line at 552 nm), thereby reducing the atoms' temperature from 2 millikelvin to 10 microkelvin. This reduction in temperature should help reduce the overall systematic frequency uncertainty for our Ca optical frequency standard to < 1 Hz. Additional pulsed, quenched narrow-line third-stage cooling in 1-D yields sub-recoil temperatures as low as 300 nK, and makes possible the observation of high-contrast two-pulse Ramsey spectroscopic lineshapes.Comment: 21 Pages including figures. Submitted to JOSA

    Optical Atomic Clock aboard an Earth-orbiting Space Station (OACESS): Enhancing searches for physics beyond the standard model in space

    Get PDF
    We present a concept for a high-precision optical atomic clock (OAC) operating on an Earth-orbiting space station. This pathfinder science mission will compare the space-based OAC with one or more ultra-stable terrestrial OACs to search for space-time-dependent signatures of dark scalar fields that manifest as anomalies in the relative frequencies of station-based and ground-based clocks. This opens the possibility of probing models of new physics that are inaccessible to purely ground-based OAC experiments such as models where a dark scalar field is strongly screened near Earth's surface

    Architecture for the photonic integration of an optical atomic clock

    Get PDF
    Laboratory optical atomic clocks achieve remarkable accuracy (now counted to 18 digits or more), opening possibilities to explore fundamental physics and enable new measurements. However, their size and use of bulk components prevent them from being more widely adopted in applications that require precision timing. By leveraging silicon-chip photonics for integration and to reduce component size and complexity, we demonstrate a compact optical-clock architecture. Here a semiconductor laser is stabilized to an optical transition in a microfabricated rubidium vapor cell, and a pair of interlocked Kerr-microresonator frequency combs provide fully coherent optical division of the clock laser to generate an electronic 22 GHz clock signal with a fractional frequency instability of one part in 10^(13). These results demonstrate key concepts of how to use silicon-chip devices in future portable and ultraprecise optical clocks
    corecore