102 research outputs found
Hubble Space Telescope Battery Capacity Update
Orbital battery performance for the Hubble Space Telescope is discussed and battery life is predicted which supports decision to replace orbital batteries by 2009-2010 timeframe. Ground characterization testing of cells from the replacement battery build is discussed, with comparison of data from battery capacity characterization with cell studies of Cycle Life and 60% Stress Test at the Naval Weapons Surface Center (NWSC)-Crane, and cell Cycle Life testing at the Marshal Space Flight Center (MSFC). The contents of this presentation includes an update to the performance of the on-orbit batteries, as well as a discussion of the HST Service Mission 4 (SM4) batteries manufactured in 1996 and activated in 2000, and a second set of SM4 backup replacement batteries which began manufacture Jan 11, 2007, with delivery scheduled for July 2008
Hubble Space Telescope 2004 Battery Update
Battery cell wear out mechanisms and signatures are examined and compared to orbital data from the six on-orbit Hubble Space Telescope (HST) batteries, and the Flight Spare Battery (FSB) Test Bed at Marshall Space Flight Center (MSFC), which is instrumented with individual cell voltage monitoring. The on-orbit HST batteries were manufactured on an expedited basis after the Challenger Shuttle Disaster in 1986. The original design called for the HST to be powered by six 50 Ah Nickel Cadmium batteries, which would have required a shuttle mission every 5 years for battery replacement. The decision to use NiH2 instead has resulted in a longer life battery set which was launched with HST in April 1990, with a design life of 7 years that has now exceeded 14+ years of orbital cycling. This chart details the specifics of the original HST NiH2 cell design. The HST replacement batteries for Service Mission 4, originally scheduled for Spring 2005, are currently in cold storage at NASA Goddard Space Flight Center (GSFC). The SM4 battery cells utilize slurry process electrodes having 80% porosity
COVID-19: how has a global pandemic changed manual therapy technique education in chiropractic programs around the world?
Background
Manual therapy is a cornerstone of chiropractic education, whereby students work towards a level of skill and expertise that is regarded as competent to work within the field of chiropractic. Due to the COVID-19 pandemic, chiropractic programs in every region around the world had to make rapid changes to the delivery of manual therapy technique education, however what those changes looked like was unknown.
Aims
The aims of this study were to describe the immediate actions made by chiropractic programs to deliver education for manual therapy techniques and to summarise the experience of academics who teach manual therapy techniques during the initial outbreak of COVID-19 pandemic.
Methods
A qualitative descriptive approach was used to describe the immediate actions made by chiropractic programs to deliver manual therapy technique education during the COVID-19 pandemic. Chiropractic programs were identified from the webpages of the Councils on Chiropractic Education International and the Council on Chiropractic Education – USA. Between May and June 2020, a convenience sample of academics who lead or teach in manual therapy technique in those programs were invited via email to participate in an online survey with open-ended questions. Responses were entered into the NVivo software program and analysed using a reflexive thematic analysis by a qualitative researcher independent to the data collection.
Results
Data from 16 academics in 13 separate chiropractic programs revealed five, interconnected themes: Immediate response; Move to online delivery; Impact on learning and teaching; Additional challenges faced by educators; and Ongoing challenges post lockdown.
Conclusion
This study used a qualitative descriptive approach to describe how some chiropractic programs immediately responded to the initial outbreak of the COVID-19 pandemic in their teaching of manual therapy techniques. Chiropractic programs around the world provided their students with rapid, innovative learning strategies, in an attempt to maintain high standards of chiropractic education; however, challenges included maintaining student engagement in an online teaching environment, psychomotor skills acquisition and staff workload
Long-term evolution of upper stratospheric ozone at selected stations of the Network for the Detection of Stratospheric Change (NDSC)
The long-term evolution of upper stratospheric ozone has been recorded by lidars and
microwave radiometers within the ground-based Network for the Detection of
Stratospheric Change (NDSC), and by the space-borne Solar Backscatter Ultra-Violet
instruments (SBUV), Stratospheric Aerosol and Gas Experiment (SAGE), and Halogen
Occultation Experiment (HALOE). Climatological mean differences between these
instruments are typically smaller than 5% between 25 and 50 km. Ozone anomaly time
series from all instruments, averaged from 35 to 45 km altitude, track each other very
well and typically agree within 3 to 5%. SBUV seems to have a slight positive drift against
the other instruments. The corresponding 1979 to 1999 period from a transient simulation
by the fully coupled MAECHAM4-CHEM chemistry climate model reproduces many
features of the observed anomalies. However, in the upper stratosphere the model shows
too low ozone values and too negative ozone trends, probably due to an underestimation of
methane and a consequent overestimation of ClO. The combination of all observational
data sets provides a very consistent picture, with a long-term stability of 2% or better.
Upper stratospheric ozone shows three main features: (1) a decline by 10 to 15% since
1980, due to chemical destruction by chlorine; (2) two to three year fluctuations by 5 to
10%, due to the Quasi-Biennial Oscillation (QBO); (3) an 11-year oscillation by about
5%, due to the 11-year solar cycle. The 1979 to 1997 ozone trends are larger at the southern
mid-latitude station Lauder (45 S), reaching 8%/decade, compared to only about
6%/decade at Table Mountain (35 N), Haute Provence/Bordeaux ( 45 N), and
Hohenpeissenberg/Bern( 47 N). At Lauder, Hawaii (20 N), Table Mountain, and Haute
Provence, ozone residuals after subtraction of QBO- and solar cycle effects have levelled
off in recent years, or are even increasing. Assuming a turning point in January 1997,
the change of trend is largest at southern mid-latitude Lauder, +11%/decade, compared to
+7%/decade at northern mid-latitudes. This points to a beginning recovery of upper
stratospheric ozone. However, chlorine levels are still very high and ozone will remain
vulnerable. At this point the most northerly mid-latitude station, Hohenpeissenberg/Bern
differs from the other stations, and shows much less clear evidence for a beginning
recovery, with a change of trend in 1997 by only +3%/decade. In fact, record low upper
stratospheric ozone values were observed at Hohenpeissenberg/Bern, and to a lesser degree
at Table Mountain and Haute Provence, in the winters 2003/2004 and 2004/2005
Trends in the Vertical Distribution of Ozone: A Comparison of Two Analyses of Ozonesonde Data
We present the results of two independent analyses of ozonesonde measurements of the vertical profile of ozone. For most of the ozonesonde stations we use data that were recently reprocessed and reevaluated to improve their quality and internal consistency. The two analyses give similar results for trends in ozone. We attribute differences in results primarily to differences in data selection criteria and in utilization of data correction factors, rather than in statistical trend models. We find significant decreases in stratospheric ozone at all stations in middle and high latitudes of the northern hemisphere from 1970 to 1996, with the largest decreases located between 12 and 21 km, and trends of -3 to -10 %/decade near 17 km. The decreases are largest at the Canadian and the most northerly Japanese station, and are smallest at the European stations, and at Wallops Island, U.S.A. The mean mid-latitude trend is largest, -7 %/decade, from 12 to 17.5 km for 1970-96. For 1980-96, the decrease is more negative by 1-2 %/decade, with a maximum trend of -9 %/decade in the lowermost stratosphere. The trends vary seasonally from about 12 to 17.5 km, with largest ozone decreases in winter and spring. Trends in tropospheric ozone are highly variable and depend on region. There are decreases or zero trends at the Canadian stations for 1970-96, and decreases of -2 to -8 %/decade for the mid-troposphere for 1980-96; the three European stations show increases for 1970-96, but trends are close to zero for two stations for 1980-96 and positive for one; there are increases in ozone for the three Japanese stations for 1970-96, but trends are either positive or zero for 1980-96; the U.S. stations show zero or slightly negative trends in tropospheric ozone after 1980. It is not possible to define reliably a mean tropospheric ozone trend for northern mid-latitudes, given the small number of stations and the large variability in trends. The integrated column trends derived from the sonde data are consistent with trends derived from both surface based and satellite measurements of the ozone column
- …