1,384 research outputs found

    Bats Use Magnetite to Detect the Earth's Magnetic Field

    Get PDF
    While the role of magnetic cues for compass orientation has been confirmed in numerous animals, the mechanism of detection is still debated. Two hypotheses have been proposed, one based on a light dependent mechanism, apparently used by birds and another based on a “compass organelle” containing the iron oxide particles magnetite (Fe3O4). Bats have recently been shown to use magnetic cues for compass orientation but the method by which they detect the Earth's magnetic field remains unknown. Here we use the classic “Kalmijn-Blakemore” pulse re-magnetization experiment, whereby the polarity of cellular magnetite is reversed. The results demonstrate that the big brown bat Eptesicus fuscus uses single domain magnetite to detect the Earths magnetic field and the response indicates a polarity based receptor. Polarity detection is a prerequisite for the use of magnetite as a compass and suggests that big brown bats use magnetite to detect the magnetic field as a compass. Our results indicate the possibility that sensory cells in bats contain freely rotating magnetite particles, which appears not to be the case in birds. It is crucial that the ultrastructure of the magnetite containing magnetoreceptors is described for our understanding of magnetoreception in animals

    Should We Learn Probabilistic Models for Model Checking? A New Approach and An Empirical Study

    Get PDF
    Many automated system analysis techniques (e.g., model checking, model-based testing) rely on first obtaining a model of the system under analysis. System modeling is often done manually, which is often considered as a hindrance to adopt model-based system analysis and development techniques. To overcome this problem, researchers have proposed to automatically "learn" models based on sample system executions and shown that the learned models can be useful sometimes. There are however many questions to be answered. For instance, how much shall we generalize from the observed samples and how fast would learning converge? Or, would the analysis result based on the learned model be more accurate than the estimation we could have obtained by sampling many system executions within the same amount of time? In this work, we investigate existing algorithms for learning probabilistic models for model checking, propose an evolution-based approach for better controlling the degree of generalization and conduct an empirical study in order to answer the questions. One of our findings is that the effectiveness of learning may sometimes be limited.Comment: 15 pages, plus 2 reference pages, accepted by FASE 2017 in ETAP

    The rise of dentine hypersensitivity and tooth wear in an ageing population

    Get PDF
    Our understanding of the aetiology of dentine hypersensitivity (DH) has changed dramatically over the past few decades. It is no longer an enigma, but other problems exist. The prevalence of DH in the world and in particular in the UK is increasing, predominately due to increases in tooth wear and the erosive dietary intake in the younger population. DH is increasingly reported in all age groups and is shown to provide clinical indication of an active erosive tooth wear. As the population ages and possibly retain teeth for longer, the likelihood of tooth wear and DH could increase. This paper describes the prevalence, aetiology, diagnosis and management of DH in relation to tooth wear, which work together through a surface phenomenon. The aim is to raise awareness of the conditions and to help inform a prevention strategy in an ageing population, which starts from younger age groups to reduce disease into older age

    Effects of Contact Network Models on Stochastic Epidemic Simulations

    Full text link
    The importance of modeling the spread of epidemics through a population has led to the development of mathematical models for infectious disease propagation. A number of empirical studies have collected and analyzed data on contacts between individuals using a variety of sensors. Typically one uses such data to fit a probabilistic model of network contacts over which a disease may propagate. In this paper, we investigate the effects of different contact network models with varying levels of complexity on the outcomes of simulated epidemics using a stochastic Susceptible-Infectious-Recovered (SIR) model. We evaluate these network models on six datasets of contacts between people in a variety of settings. Our results demonstrate that the choice of network model can have a significant effect on how closely the outcomes of an epidemic simulation on a simulated network match the outcomes on the actual network constructed from the sensor data. In particular, preserving degrees of nodes appears to be much more important than preserving cluster structure for accurate epidemic simulations.Comment: To appear at International Conference on Social Informatics (SocInfo) 201

    A genetic algorithm for interpretable model extraction from decision tree ensembles

    Get PDF
    Models obtained by decision tree induction techniques excel in being interpretable. However, they can be prone to overfitting, which results in a low predictive performance. Ensemble techniques provide a solution to this problem, and are hence able to achieve higher accuracies. However, this comes at a cost of losing the excellent interpretability of the resulting model, making ensemble techniques impractical in applications where decision support, instead of decision making, is crucial. To bridge this gap, we present the genesim algorithm that transforms an ensemble of decision trees into a single decision tree with an enhanced predictive performance while maintaining interpretability by using a genetic algorithm. We compared genesim to prevalent decision tree induction algorithms, ensemble techniques and a similar technique, called ism, using twelve publicly available data sets. The results show that genesim achieves better predictive performance on most of these data sets compared to decision tree induction techniques & ism. The results also show that genesim's predictive performance is in the same order of magnitude as the ensemble techniques. However, the resulting model of genesim outperforms the ensemble techniques regarding interpretability as it has a very low complexity

    An intuitive Python interface for Bioconductor libraries demonstrates the utility of language translators

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computer languages can be domain-related, and in the case of multidisciplinary projects, knowledge of several languages will be needed in order to quickly implements ideas. Moreover, each computer language has relative strong points, making some languages better suited than others for a given task to be implemented. The Bioconductor project, based on the R language, has become a reference for the numerical processing and statistical analysis of data coming from high-throughput biological assays, providing a rich selection of methods and algorithms to the research community. At the same time, Python has matured as a rich and reliable language for the agile development of prototypes or final implementations, as well as for handling large data sets.</p> <p>Results</p> <p>The data structures and functions from Bioconductor can be exposed to Python as a regular library. This allows a fully transparent and native use of Bioconductor from Python, without one having to know the R language and with only a small community of <it>translators</it> required to know both. To demonstrate this, we have implemented such Python representations for key infrastructure packages in Bioconductor, letting a Python programmer handle annotation data, microarray data, and next-generation sequencing data.</p> <p>Conclusions</p> <p>Bioconductor is now not solely reserved to R users. Building a Python application using Bioconductor functionality can be done just like if Bioconductor was a Python package. Moreover, similar principles can be applied to other languages and libraries. Our Python package is available at: <url>http://pypi.python.org/pypi/rpy2-bioconductor-extensions/</url></p

    Creation of ultracold molecules from a Fermi gas of atoms

    Full text link
    Since the realization of Bose-Einstein condensates (BEC) in atomic gases an experimental challenge has been the production of molecular gases in the quantum regime. A promising approach is to create the molecular gas directly from an ultracold atomic gas; for example, atoms in a BEC have been coupled to electronic ground-state molecules through photoassociation as well as through a magnetic-field Feshbach resonance. The availability of atomic Fermi gases provides the exciting prospect of coupling fermionic atoms to bosonic molecules, and thus altering the quantum statistics of the system. This Fermi-Bose coupling is closely related to the pairing mechanism for a novel fermionic superfluid proposed to occur near a Feshbach resonance. Here we report the creation and quantitative characterization of exotic, ultracold 40^{40}K2_2 molecules. Starting with a quantum degenerate Fermi gas of atoms at T < 150 nanoKelvin we scan over a Feshbach resonance to adiabatically create over a quarter million trapped molecules, which we can convert back to atoms by reversing the scan. The small binding energy of the molecules is controlled by detuning from the Feshbach resonance and can be varied over a wide range. We directly detect these weakly bound molecules through rf photodissociation spectra that probe the molecular wavefunction and yield binding energies that are consistent with theory

    Semi-natural habitats support biological control, pollination and soil conservation in Europe:A review

    Get PDF
    Semi-natural habitats are integral to most agricultural areas and have the potential to support ecosystem services, especially biological control and pollination by supplying resources for the invertebrates providing these services and for soil conservation by preventing erosion and run-off. Some habitats are supported through agri-environment scheme funding in the European Union, but their value for ecosystem service delivery has been questioned. An improved understanding of previous research approaches and outcomes will contribute to the development of more sustainable farming systems, improve experimental designs and highlight knowledge gaps especially for funders and researchers. Here we compiled a systematic map to allow for the first time a review of the quantity of evidence collected in Europe that semi-natural habitats support biological control, pollination and soil conservation. A literature search selected 2252 publications, and, following review, 270 met the inclusion criteria and were entered into the database. Most publications were of pest control (143 publications) with less on pollination (78 publications) or soil-related aspects (31). For pest control and pollination, most publications reported a positive effect of semi-natural habitats. There were weaknesses in the evidence base though because of bias in study location and the crops, whilst metrics (e.g. yield) valued by end users were seldom measured. Hedgerows, woodland and grassland were the most heavily investigated semi-natural habitats, and the wider landscape composition was often considered. Study designs varied considerably yet only 24% included controls or involved manipulation of semi-natural habitats. Service providers were commonly measured and used as a surrogate for ecosystem service delivery. Key messages for policymakers and funders are that they should encourage research that includes more metrics required by end users, be prepared to fund longer-term studies (61% were of only 1-year duration) and investigate the role of soils within semi-natural habitats in delivering ecosystem services

    Old Stellar Populations in Nearby Dwarf Galaxies

    Get PDF
    What can we learn from the somewhat arduous study of old stellar populations in nearby galaxies? Unless the nearby universe is subtly anomalous, it should contain a relatively normal selection of galaxies whose histories are representative of field galaxies in general throughout the Universe. We can therefore take advantage of our ability to resolve local galaxies into individual stars to directly, and accurately, measure star formation histories. The star formation histories are determined from numerical models, based on stellar evolution tracks, of colour-magnitude diagrams. The most accurate information on star formation rates extending back to the earliest epoches can be obtained from the structure of the main sequence. However, the oldest main sequence turnoffs are very faint, and it is often necessary to use the brighter, more evolved, populations to infer the star formation history at older times. A complete star formation history can be compared with the spectroscopic properties of galaxies seen over a large range of lookback times in redshift surveys. There is considerable evidence that the faint blue galaxies seen in large numbers in cosmological surveys are the progenitors of the late-type irregular galaxies seen in copious numbers in the Local Group, and beyond. We consider how the ``Madau-diagram'', the star formation history of the Universe, would look if the Local Group were to be considered representative of the Universe as a whole
    • …
    corecore