1,166 research outputs found

    Undamped nonequilibrium dynamics of a nondegenerate Bose gas in a 3D isotropic trap

    Full text link
    We investigate anomalous damping of the monopole mode of a non-degenerate 3D Bose gas under isotropic harmonic confinement as recently reported by the JILA TOP trap experiment [D. S. Lob- ser, A. E. S. Barentine, E. A. Cornell, and H. J. Lewandowski (in preparation)]. Given a realistic confining potential, we develop a model for studying collective modes that includes the effects of anharmonic corrections to a harmonic potential. By studying the influence of these trap anharmonicities throughout a range of temperatures and collisional regimes, we find that the damping is caused by the joint mechanisms of dephasing and collisional relaxation. Furthermore, the model is complimented by Monte Carlo simulations which are in fair agreement with data from the JILA experiment.Comment: 11 pages, 6 figure

    Gate recess engineering of pseudomorphic In0.30GaAs/GaAs HEMTs

    Get PDF
    The authors report how the performance of 0.12 ÎŒm GaAs pHEMTs is improved by controlling both the gate recess width, using selective dry etching, and the gate position in the source drain gap, using electron beam lithography. pHEMTs with a transconductance of 600 mS/mm, off state breakdown voltages >2 V, fτ of 120 GHz, f max of 180 GHz and MAG of 13.5 dB at 60 GHz are reported

    Georgia Tech Industrial Development Manual

    Get PDF
    Issued as Project no. E-127-

    Loss of ATM/Chk2/p53 Pathway Components Accelerates Tumor Development and Contributes to Radiation Resistance in Gliomas

    Get PDF
    SummaryMaintenance of genomic integrity is essential for adult tissue homeostasis and defects in the DNA-damage response (DDR) machinery are linked to numerous pathologies including cancer. Here, we present evidence that the DDR exerts tumor suppressor activity in gliomas. We show that genes encoding components of the DDR pathway are frequently altered in human gliomas and that loss of elements of the ATM/Chk2/p53 cascade accelerates tumor formation in a glioma mouse model. We demonstrate that Chk2 is required for glioma response to ionizing radiation in vivo and is necessary for DNA-damage checkpoints in the neuronal stem cell compartment. Finally, we observed that the DDR is constitutively activated in a subset of human GBMs, and such activation correlates with regions of hypoxia

    Perivascular Nitric Oxide Activates Notch Signaling and Promotes Stem-like Character in PDGF-Induced Glioma Cells

    Get PDF
    SummaryeNOS expression is elevated in human glioblastomas and correlated with increased tumor growth and aggressive character. We investigated the potential role of nitric oxide (NO) activity in the perivascular niche (PVN) using a genetic engineered mouse model of PDGF-induced gliomas. eNOS expression is highly elevated in tumor vascular endothelium adjacent to perivascular glioma cells expressing Nestin, Notch, and the NO receptor, sGC. In addition, the NO/cGMP/PKG pathway drives Notch signaling in PDGF-induced gliomas in vitro, and induces the side population phenotype in primary glioma cell cultures. NO also increases neurosphere forming capacity of PDGF-driven glioma primary cultures, and enhances their tumorigenic capacity in vivo. Loss of NO activity in these tumors suppresses Notch signaling in vivo and prolongs survival of mice. This mechanism is conserved in human PDGFR amplified gliomas. The NO/cGMP/PKG pathway's promotion of stem cell-like character in the tumor PVN may identify therapeutic targets for this subset of gliomas

    Causality

    Get PDF
    Making correct causal claims is important for research and practice. This article explains what causality is, and how it can be established via experimental design. Because experiments are infeasible in many applied settings, researchers often use "observational" methods to estimate causal models. In these situations, it is likely that model estimates are compromised by endogeneity. The article discusses the conditions that engender endogeneity and methods that can eliminate it

    Nuclear Disks of Gas and Dust in Early Type Galaxies and the Hunt for Massive Black Holes: Hubble Space Telescope Observations of NGC 6251

    Get PDF
    We discuss Hubble Space Telescope optical images and spectra of NGC 6251, a giant E2 galaxy and powerful radio source at a distance of 106 Mpc (for H_0 = 70 km/s/Mpc). The galaxy is known to host a very well defined dust disk (O'Neil et al. 1994); the exceptional resolution of our V and I images allows a detailed study of the disk structure. Furthermore, narrow band images centered on the Halpha+[NII] emission lines, reveal the presence of ionized gas in the inner 0.3 arcsec of the disk. We used the HST/Faint Object Spectrograph with the 0.09 arcsec aperture to study the velocity structure of the disk. Dynamical models were constructed for two extreme (in terms of central concentration) analytical representations of the stellar surface brightness profile, from which the mass density and corresponding rotational velocity are derived assuming a constant mass-to-light ratio (M/L)_V ~ 8.5 M_solar/L_solar. For both representations of the stellar component, the models show that the gas is in Keplerian motion around a central mass ~ 4 - 8 X 10^8 solar masses, and that the contribution of radial flows to the velocity field is negligible.Comment: 45 pages, submitted to Ap
    • 

    corecore