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SUMMARY
Maintenance of genomic integrity is essential for adult tissue homeostasis and defects in the DNA-damage
response (DDR) machinery are linked to numerous pathologies including cancer. Here, we present evidence
that the DDR exerts tumor suppressor activity in gliomas. We show that genes encoding components of the
DDR pathway are frequently altered in human gliomas and that loss of elements of the ATM/Chk2/p53
cascade accelerates tumor formation in a glioma mouse model. We demonstrate that Chk2 is required for
glioma response to ionizing radiation in vivo and is necessary for DNA-damage checkpoints in the neuronal
stem cell compartment. Finally, we observed that the DDR is constitutively activated in a subset of human
GBMs, and such activation correlates with regions of hypoxia.
INTRODUCTION

The gliomas are a large group of brain cancers that include

astrocytomas, oligodendrogliomas, and oligoastrocytomas.

Glioblastoma multiforme (GBM), the highest grade of malignant

astrocytomas (WHO Grade IV), is the most common and lethal

primary central nervous system (CNS) tumor in adults. Despite

the recent advances in treatment modalities, GBM patients

generally respondpoorly to all therapeutic approaches and prog-

nosis remains dismal. On amolecular basis, a decade of studies,

including the most recent large-scale genomic analysis (The

Cancer Genome Atlas Research Network, 2008; Parsons et al.,

2008), has underlined the complexity and heterogeneity of

genetic events that characterize the glioblastoma genome, but

the mechanisms responsible for the variability in radiation

response remain elusive.
Significance

Glioblastoma mutliforme (GBM) is the most aggressive and let
decades of efforts, GBMs patients remain refractory to standar
the mechanisms responsible for this poor treatment response
Here, we show that some of the elements of the DNA damag
formation in a glioma mouse model. Furthermore, we demons
required for glioma radiation sensitivity, suggesting that the inte
sion and for irradiation response.

Can
GBMs are divided in two subtypes on the basis of clinical

history: ‘‘primary GBMs’’ that arise de novo, with no evidences

of precursor lesions, and ‘‘secondary GBMs,’’ evolving from

a lower grade tumor over time. Histologically, GBMs are charac-

terized by tumor cells invading adjacent normal brain paren-

chyma, vascular proliferation and by the presence of area of

necrosis and hemorrhage. Necrotic regions are typically

surrounded by dense cellular zones, normally referred as to

pseudopalisades. The origin of these structures is still currently

debated, but they are of central importance to the malignant

behavior of GBMs (Brat et al., 2004).

Preservation of genomic integrity is an essential process for

cell homeostasis and defects in the DNA-damage response

(DDR), a complex network of proteins required for cell-cycle

checkpoint and DNA repair, have been associated with tumori-

genesis. In response to DNA damage, cells activate the sensor
hal tumor of the central nervous system in the adult. Despite
d therapies and have a very low survival rate. Understanding
is one of the primary goals in the brain tumor research field.
e response (DDR) pathway are required to suppress tumor
trate that Chk2, one of the key components of the DDR, is
grity of this pathway is instrumental both for tumor suppres-
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Mutation CNA (loss)
N. of patients Case ID Type AA change

ATR 1 (0.6%) TCGA-02-0010 Nonsense R2533* 17 (6.3%)

ATM 2 (1.3%) TCGA-02-0010 Missense G138R 33 (12%)
2 mutations Missense V245A

TCGA-02-0114 Missense R2912K

CHEK1 2 (1.3%) TCGA-06-0145 Missense R160H 35 (13%)

TCGA-02-0043 Splice site

CHEK2 n/d - - - 60 (22%)

Figure 1. CHEK2 Is Commonly Altered in GBM

(A) Table of somatic mutations (n = 158) (see also Table S1)

and copy number alteration (CNA; only chromosomal copy

loss are shown) (n = 272) assessed in primary GBM

samples of TCGA. CHEK2 mutation frequency couldn’t

be determined due to technical reasons (see the text for

details).

(B) CHEK2 expression is significantly decreased in tumors

with copy loss (p = 3.5e-9, Student’s t test).

(C) Venn diagram representing event of loss/mutation of

TP53, amplification of MDM2/4 and loss/mutation of

CHEK2 (unaltered = 126).
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kinases ATM, ATR, and DNA-PK (Durocher and Jackson, 2001;

Shiloh, 2003) that in turn phosphorylate multiple downstream

substrates, including the effector kinases Chk1 andChk2 (Bartek

and Lukas, 2003; Stracker et al., 2009), resulting in cell-cycle

checkpoint initiation and/or apoptosis. Markers of a constitu-

tively active DDR have been described in many types of malig-

nant lesions in different tissues (Bartkova et al., 2005; Gorgoulis

et al., 2005; Nuciforo et al., 2007). The DDR acts as a barrier

against tumor progression, where precancerous lesions must

inactivate p53 or other elements of the DDR to proceed to

amore aggressive status (Bartkova et al., 2005, 2006). A system-

atic approach to analyze the putative tumor suppressor activity

of the DDR in gliomas has not been undertaken. Furthermore,

given that radiation is the standard therapy for GBM patients,

understanding the tumor-specific abnormalities of the DDR

machinery may be of important value to design patient-specific

therapies.

In this study, we performed a detailed analysis of the genetic

alteration in GBMs of genes encoding DDR components using

the data available through The Cancer Genome Atlas (TCGA)

consortium. We further focused on the tumor suppressor activity

of the ATM/Chk2/p53 pathway in a gliomamousemodel, andwe

investigated the contribution of loss of the Chk2 checkpoint

kinase to the radiation resistance of GBMs.
RESULTS

Genetic Loss of Function of the DDR in Human GBMs
Recent large-scale genomic analyses of GBM have identified

a diversity of recurrent mutations and chromosomal copy

number alterations (CNA) affecting genes involved in multiple
620 Cancer Cell 18, 619–629, December 14, 2010 ª2010 Elsevier Inc.
signaling pathways (The Cancer Genome Atlas

Research Network, 2008; Parsons et al., 2008).

We now performed an analysis of TCGA data

set for GBM, looking at genes encoding key

components of the DDR and we found that

3.2% of tumors showed somatic mutations in

ATR, ATM, or CHEK1 (Figure 1A; see Table S1

available online). The exact frequency of CHEK2

mutations is unknown at this time because

many of the mutations initially described in the

TCGA data set have not been reconfirmed by

secondary analysis (Table S1).

Genomic loss of at least one copy of ATR,

ATM, CHEK1, or CHEK2 was found in 36% of

GBM samples in TCGA. Loss among the four genes was signifi-

cantly higher than background as determined by random

sampling (p = 0.0146, 10,000 iterations) (see Supplemental

Experimental Procedures). Among these four DDR components

analyzed, CHEK2 was the most commonly lost (22%) and copy

number loss was associated with significantly lower gene

expression (Figure 1B). Only a small percentage of patients that

had CHEK2 deletions presented concomitant alterations of the

other DDR components under investigation: 13.3% (8/60) for

ATM, 10% (6/60) for ATR, and 11.6% (7/60) for CHEK1 (Table

S2). On the other hand, approximately 50% of GBM patients

with CHEK2 alterations also carried defect in the p53 signaling

pathway (such as TP53 mutation/loss or amplifications of

MDM2/4, both well-known p53 inhibitors), suggesting that these

genetic events are not mutually exclusive in gliomas (Figure 1C).

The ATM/Chk2/p53 Loss of Function Accelerates GBM
Formation in Mice
The frequent alterations of DDR components in human GBMs

suggested a putative tumor suppressor activity of this pathway

in the brain. Therefore, to directly demonstrate a role of loss of

DDR core elements (ATM, CHK2, and p53) in glioma formation,

we employed the RCAS/tv-a system, that uses a specific avian

leukosis virus (RCAS) to mediate gene transfer into somatic cells

transgenic for its receptor (tv-a). In this study, we used Nestin-

tv-a (Ntv-a) mice that express the tv-a receptor under the control

of the nestin promoter, a marker of neural/glial stem and progen-

itor cells (Holland et al., 1998). Newborn mice were injected with

cells producing the RCAS retroviruses carrying the platelet-

derived growth factor-B (PDGFB) (Shih et al., 2004).

In Ntv-a mice, loss of either both copies or a single copy of

Chk2 significantly accelerates PDGF-induced glioma formation,
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Figure 2. The ATM/Chk2/p53 Cascade Prevents GBM Formation in Mice

(A and B) Kaplan-Meier survival curves of PDGF-induced gliomas in Nestin-tva mice of the indicated genotypes; log rank p values have been measured with the

Mantle-Cox test.

(C) Top panel, H&E staining of a RCAS/PDGF-induced GBM (left), inset shows pseudopalisading necrosis (black arrows) and microvascular proliferation (yellow

arrows) (right); bottom panel, IHC staining with anti-Olig2 (left) and anti-GFAP (right) of the GBM showed above. Scale bars, 100 mm.

(D) Graph showing the percentage of Grade II–IV tumors for the indicated genotypes.

(E) Table showing the number of Grade IV tumors (GBM)/total tumors; p values were measured versus wild-type mice using the Fisher’s exact test.

See also Figure S1.
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with the wild-type mice having an average survival of over

90 days, Chk2 null mice of 34 days (p < 0.0001, log rank test)

and heterozygous of 55 days (p = 0.0036, log rank test) (Fig-

ure 2A). Notably, loss of heterozigosity (LOH) was not detected

in Chk2+/� gliomas (Figure S1A); however, two of four tumors

analyzed showed lower expression of Chk2 mRNA when

compared with the normal contralateral side of the brain (Fig-

ure S1B), suggesting that other mechanisms than genomic

loss can lead to inactivation of the remaining wild-type allele.

Chk2 is known to be required for the p53-dependent apoptotic

response to radiation (Hirao et al., 2000, 2002; Takai et al., 2002).

In order to analyze the role of p53 in Chk2-mediated tumor

suppression, we crossed Ntv-a Chk2�/� mice with p53�/�

mice and noted that PDGF-induced gliomas arise with a similar

latency in both genetic backgrounds (Figure 2A). Furthermore,

the loss of a single p53 allele did not further accelerate glioma

formation when Chk2 is already partially inactivated (Chk2+/�).
Both p53+/� and Chk2+/�;p53+/� genetic backgrounds showed

a PDGF-induced glioma-free survival very similar to the

Chk2+/� background, suggesting that Chk2 and p53 are epistatic

in the suppression of glioma formation.

ATM kinase is required for Chk2 activation and acts in concert

and in parallel with Chk2 in DNA damage checkpoint modulation

(Matsuoka et al., 1998; Stracker et al., 2007); therefore, we deter-
Can
mined if ATMwas also required to suppress PDGF-induced glio-

magenesis. Indeed, loss of a single copy or both copies of ATM

significantly accelerates PDGF-induced glioma formation, with

Atm+/+ mice having an average survival of 91 days, Atm+/� of

61 days (p = 0.0023, log rank test) and Atm�/� of 58.5 days

(p = 0.019, log rank test) (Figure 2B). No LOH was detected in

Atm+/� gliomas (Figure S1C).

Gliomas of all genotypes expressed Olig2 throughout the

tumor mass, while GFAP-positive cells were restricted to the

area adjacent to tumor vessels (Figure 2C, bottom panels) and

along the tumor/normal border (data not shown). The tumors of

the different genotypes were then classified using the World

Health Organization (WHO) grading system: Grade IV, also

known as GBM (presence of microvascular proliferation, MVP,

and pseudopalisading necrosis), Grade III (presence of MVP

only), and Grade II (absence of both MVP and pseudopalisading

necrosis) (Figure S1D). GBMs arise with higher frequency in

Chk2 null (72%) (p < 0.0001, Fisher’s exact test), p53 null

(100%) (p = 0.0029, Fisher’s exact test), and Atm null mice

(83%) (p = 0.0002, Fisher’s exact test) compared with wild-

type mice (19%) (Figures 2D and 2E), suggesting that the

ATM/Chk2/p53 pathway is required to constrain the tumor

progression to a more malignant phenotype. Moreover,

despite having a similar glioma free survival, p53+/� and
cer Cell 18, 619–629, December 14, 2010 ª2010 Elsevier Inc. 621
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Figure 3. Chk2 Is Required for Radiation Response

in Gliomas In Vivo

(A and B) Percentage of (A) TUNEL (24 hr post 10 Gy IR)

and (B) pH 3 (3 and 24 hr post 10 Gy IR) positive glioma

cells in tumor-bearing mice of the indicated genotype;

Student’s t test (A) **p = 0.0023, ***p = 0.007 and (B)
##p = 0.0089 (Chk2�/� versus WT). Data are presented

as mean ± SD of three tumors for each group.

(C and D) Kaplan-Meier survival curves of RCAS/PDGF-

induced gliomas in Ntv-a and Ink4a/Arf�/� and Ntv-a

Chk2�/� mice, respectively; black arrows indicate the

day of exposure to 10 Gy IR. Log rank p values have

been measured with the Mantle-Cox test.
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Chk2+/�;p53+/�mice developGBMswith a higher frequency than

the Chk2+/� mice (75% and 85% versus 40%). These data

suggest that loss of Chk2 does not completely phenocopy p53

loss with regards to tumor formation, and may explain the

concurrent alteration of TP53 and CHEK2 in a subset of human

GBMs.

Loss of Chk2 Potentiates GBMs Radiation Resistance
In Vivo
Radiotherapy and chemotherapy are the standard treatments for

GBMs patients; however, the treatment outcomes are variable

and most patients respond poorly to these treatments. Ionizing

radiation (IR) and radiomimetic drugs lead to the formation of

double-strand DNA breaks (DSBs) that are responsible for the

establishment of the DDR. To determine if loss of Chk2 contrib-

utes to the poor response of glioma to IR, we analyzed the

outcome of radiation in the Chk2�/� tumor-bearing mice.

As controls, we used both wild-type and Ink4a/Arf null mice

(Dai et al., 2001), since deletion of the INK4a/ARF locus is one

of the most frequent events that leads to p53 pathway inactiva-

tion in human glioma.

To examine the IR response of glioma in vivo, glioma-bearing

mice were exposed to ten Gy IR and apoptosis and G2/M arrest

were measured after 24 hr. As shown in Figure 3A, upon IR,

Ink4a/Arf null mice showed a nonsignificant reduction of TUNEL-

positive tumor cells compared with wild-type mice (10% and

20%, respectively, p > 0.05, Student’s t test). By contrast,

Chk2 null mice showed significantly reduced numbers of

apoptotic cells (approximately 3%), compared both with wild-

type mice (p = 0.0023, Student’s t test) and Ink4a/Arf null (p =

0.0007, Student’s t test). Moreover, while the number of dividing
622 Cancer Cell 18, 619–629, December 14, 2010 ª2010 Elsevier Inc.
tumor cells (phospho-Histone H3 [pH3]) are

nearly undetectable 3 hr post-IR in all the

different genetic background analyzed, only

the Chk2 tumors have a similar number of

dividing cells to the control nonirradiated mice

24 hr post-IR (Figure 3B).

We then examined the long-term effect of

ionizing radiation in the Chk2�/� and Ink4a/

Arf�/� GBM mouse models. Of note, we did not

include wild-type mice in this experiment due

to their much lower tumor incidence and longer

survival. Newborn mice were injected with

RCAS/PDGF and 18 days postinjection random-
ized into twogroups.One groupwas locally irradiated to the head

with 10 Gy. A small cohort of mice was also sacrificed at the time

of irradiation and the presence of tumor lesionswas confirmedby

H&E in all animals analyzed (5/5) in both genetic backgrounds

(data not shown). The exposure to IR resulted in a prolonged

survival in the Ink4a/Arf�/� (approximately 15 days, p = 0.0002

log rank) but did not have any effect on the Chk2�/� mice. These

data are consistent with the lower apoptotic index and higher

proliferation rate that we observed in Ntv-a Chk2�/� tumor-

bearing mice exposed to IR, strongly suggesting that Chk2 plays

an important role in the radiation response in glioma.

Cell-Cycle Checkpoint Defects in Chk2 Null Glioma
Neurospheres and Normal Neuronal Stem Cells of
Immature Postnatal Mice
We further investigated the integrity of cell-cycle checkpoints in

Chk2 null gliomas using tumor neurospheres (tumor cells

cultured in the bFGF and EGF) derived from primary glioblas-

tomas. These cell cultures more closely resemble the phenotype

and genotype of the tumors than do serum cultured cell lines

(Lee et al., 2006). Moreover, GBM cells propagated as

neurospheres (both from human and mouse) contain stem-like

subpopulations that are able to generate tumors when

transplanted into mice, and exhibit a more accurate infiltrating

growth pattern seen in primary tumors (Bleau et al., 2009; Galli

et al., 2004). As we have previously shown (Bleau et al., 2009;

Charles et al., 2010), tumor neurospheres derived from N-tva

mice injected with RCAS/PDGF, when transplanted into synge-

neic mice, are able to generate tumors that histopathologically

resemble the primary tumors (Figure S2A), suggesting that they

could be used as a reliable in vitro tumor model for our studies.
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Figure 4. Cell-Cycle Checkpoints Are Defective in

Chk2 Null Tumor Neurospheres and Normal

Neuronal Stem Cells (NSCs)

(A and B) (A) The S-phase ratios (%BrdU-positive of

treated/average %BrdU-positive untreated) and (B) the

mitotic ratios (%pH3-positive of treated /average %pH3-

positive untreated) of IR-treated tumor neurospheres (18

and 3 hr posttreatment, respectively) are plotted. The

wedges denote increasing ionizing radiation (IR) doses

(0, 1, 5, or 10 Gy).

(C) Mitotic ratios of 10 Gy IR-treated tumor neurospheres

at the indicated time points.

(D) S-phase ratios of mock (white bar) or 10 Gy IR-treated

(black bar) NSCs of the indicated genotype. See also Fig-

ure S2.

(E) Mitotic ratios of 10 Gy IR-treated NSCs at the indicated

time points. Results are presented as mean ± SD from

a representative of two experiments, performed in tripli-

cate.
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The G1/S checkpoint, which prevents cells from entering

S phase, is predominantly regulated by p53 (Kuerbitz et al.,

1992) and is defective in ATM null cells (Xu and Baltimore,

1996). Despite its well-known function in ATM-dependent

IR-induced p53 activation, the role of Chk2 in the G1/S check-

point is still controversial (Hirao et al., 2002; Jack et al., 2002;

Stracker et al., 2008; Takai et al., 2002). To examine the G1/S

checkpoint, glioma neurospheres were exposed to increasing

doses of IR (1, 5, and 10 Gy), and the percentage of cells in

S phase 18 hr posttreatment was measured by BrdU incorpora-

tion. In the Ink4a/Arf �/� glioma neurospheres, the percentage of

BrdU-positive cells at the highest IR dose (10 Gy) dropped to

approximately 10% of the mock irradiated cells (Figure 4A).

The same result was obtained with wild-type tumor neuro-

spheres (data not shown). By contrast, over 60% of the cells

was still incorporating BrdU in Chk2�/� glioma neurospheres,

clearly indicating a defect in the G1/S checkpoint in these cells.

As expected p53�/� glioma neurospheres are completely devoid

of such a checkpoint andmaintain the ability to incorporate BrdU

even at the highest radiation dose analyzed (Figure 4A).

The role of Chk2 in the G2/M checkpoint has also been

debated (Hirao et al., 2000, 2002; Takai et al., 2002).

As described above, Chk2 null gliomas exposed to IR show

a higher mitotic index (measured as percentage of pH3-positive

cells) than either wild-type or Ink4a/Arf null gliomas (Figure 3B),

suggesting a possible defect in the G2/M checkpoint. To analyze

the integrity of the G2/M checkpoint, glioma neurospheres were

exposed to increasing doses of IR (1, 5, and 10 Gy), and the
Cancer Cell 18, 619–
percentage of pH3-positive cells was measured

3 hr posttreatment. Ink4a/Arf �/�, Chk2�/�, and
p53�/� cells showed similar kinetics in the

reduction of pH3-positive cells, becoming

almost undetectable at 10 Gy IR (Figure 4B).

These results are consistent with our in vivo

observations in glioma-bearing mice exposed

to IR, suggesting that the activation of the

G2/M checkpoint was intact both in vitro and

in vivo. Moreover, while all the cells in the

Chk2�/� glioma neurospheres cultures, and to

a similar extent the p53�/� cells, re-entered the
cell cycle by 24 hr posttreatment, only 5% of the cells of the

Ink4a/Arf �/� (Figure 4C) or wild-type (data not shown) did so.

These data clearly indicate that Chk2 is required for the mainte-

nance of the G2/M checkpoint in gliomas, but not for its activa-

tion, either in vitro or in vivo.

In order to exclude the possibility that the defects in cell-cycle

checkpoints in Chk2 null glioma and tumor neurospheres were

due to additional mutations acquired during the tumor formation

or in vitro cell culture artifacts (caused by multiple passages of

tumor cells), we analyzed the integrity of checkpoints in freshly

isolated neuronal stem cells (NSCs), derived from wild-type,

Chk2�/�, and Ink4a/Arf �/� newborn mice. The G1/S and G2/M

checkpoints were tested in these cultures by BrdU incorporation

and pH3-positive cell sorting. Eighteen hours after exposure to

10 Gy IR in both wild-type and Ink4a/Arf �/� resulted in less

than 10% of cells incorporating BrdU, while 60% of Chk2�/�

NSCs were still synthesizing DNA (Figure 4D; Figure S2B–

S2D). Furthermore, all genotypes responded to 10 Gy IR by

a 90%–95% reduction of pH3-positive cells, but only the

Chk2�/� NSCs re-entered the cell cycle by 24 hr after exposure

to IR (Figure 4E). These data indicate that Chk2 is required for the

activation of the G1/S and for the maintenance of G2/M check-

point in the neuronal stem cell compartment of postnatal mice.

Aberrant Constitutive Activation of DDR in GBM
Specimens
Markers of a constitutively active DDR have been described

in multiple human epithelial tumors (Bartkova et al., 2005;
629, December 14, 2010 ª2010 Elsevier Inc. 623
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Figure 5. Constitutive Activation of DDR in Human GBM

(A) Summary of IHC results. gH2AX and Chk2 pT68 were quantified as described in Experimental Procedures. 53BP1 staining was scored as follow: weak (+),

moderate (++), and strong (+++). n/a = not applicable (absence of pseudopalisades necrosis).

(B) Plot of the percentage of total gH2AX and Chk2 pT68-positive cells.

(C–H) Micrographs of pseudopalisading necrosis of GBMs stained with H&E, anti-HIF1a, anti Ki-67, anti- gH2AX, anti-Chk2 pT68, and anti-53bp1, respectively

(see also Figure S3). Inset in (E) shows nuclear accumulation of HIF1a in cells of the pseudopalisades rim. Scale bars, 100 mm.

(I) Plot of the percentage of positive cells in tumor bulk and pseudopalisades for gH2AX (top panel) and for Chk2 pT68 (bottom panel).**p < 0.01 and *p < 0.05 (see

text for more details).
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Gorgoulis et al., 2005; Nuciforo et al., 2007), but it has been

shown to be absent in other malignant lesions, such as testicular

germ cell tumors (Bartkova et al., 2007). To analyze a possible

aberrant activation of the DDR in GBMs specimens, we per-

formed IHC on formalin-fixed, paraffin embedded tissues, using

antibodies against phosphorylated S139 of histone H2AX

(gH2AX) and phosphorylated T68 Chk2 (Chk2 pT68). A granular

(focal) nuclear staining pattern of 53BP1, indicating the formation

of DNA double-strand breaks, was also considered a marker

(53BP1 foci) for an activated DDR (see Figure S3A for represen-

tative micrographs).

We stained 14 newly diagnosed GBMs samples from patients

not previously exposed to radiation or chemotherapy. Approxi-

mately 80% (11/14) of the samples showed nuclear gH2AX stain-

ing in a small fraction of cells, ranging from 0.5% to 8.4% of total
624 Cancer Cell 18, 619–629, December 14, 2010 ª2010 Elsevier Inc
cells (Figure 5A). No gH2AX accumulation was found in ten

normal tissue samples of different area of the brain (data not

shown). Chk2 pT68 was detected in a lower percentage of

tumors than gH2AX, approximately 60% (8/14), and in a number

of cells varying from 0.2% to 2.5% (Figures 5A and 5B)

(p = 0.0069, two sided Student’s paired t test on the percentage

of gH2AX cells versus percentage of Chk2 pT68 cells). Consis-

tent with the gH2AX observations, no Chk2 pT68 staining was

present in normal tissues (data not shown). Moreover, 14% of

tumors analyzed (2/14) presented nuclear 53BP1 foci and

notably, those samples were the ones with a high percentage

of gH2AX-positive cells (Figure 5A).

Several tumors analyzed presented regions of pseudopalisad-

ing necrosis. These structures, which represent the histologic

definition of GBMs, are characterized by hyper cellular area
.
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surrounding a necrotic center (Figure 5C). Consistent with

previous reports (Brat et al., 2004), pseudopalisading cells in

these tumors showed a lower proliferating index (measured by

Ki-67 staining) as compared with the tumor bulk and also

showed nuclear accumulation of HIF1-a (Figures 5D and 5E),

indicating higher hypoxic levels in these cells. Although only

a small percentage of total number of cells presented an

activated DDR, when compared with the adjacent tumor cells,

the pseudopalisade rim showed a significantly higher

percentage of gH2AX (p = 0.0071, two-sided paired Student’s

t test) (Figures 5F and 5I top panel; Figure S3B) and of Chk2

pT68-positive cells (p = 0.0297, two-sided paired Student’s

t test) (Figures 5G and 5I, bottom panel; Figure S3B). These

data suggest that the DDR activation in GBM may be hypoxia

related.

DISCUSSION

ATM/CHEK2 Alteration in Human Gliomas
It has been previously proposed that the DDR acts as an induc-

ible barrier to tumorigenesis, and defects in elements of the DDR

have been associated with different human pathologies,

including cancer (Jackson and Bartek, 2009). Here we show

that the ATM/Chk2/p53 cascade, key components of the DDR,

exert an important tumor suppressor activity in the brain.

Mutations of the ATM gene are responsible for the ataxia-

telangiectasia (A-T) disease, an autosomal recessive disorder

that is characterized by early onset progressive cerebellar ataxia

and high incidence of lymphoid tumors (approximately 30%)

(for review see, Lavin, 2008). With regard to the central nervous

system tumors, some cases of primary brain tumors, including

gliomas, have also been reported in A-T patients (Miyagi et al.,

1995). CHEK2, one of the main ATM downstream effectors,

has been proposed to act as a multiorgan cancer susceptibility

gene (Cybulski et al., 2004). While mutations in CHEK2 do not

appear to account for the cancer-predisposing Li-Fraumeni

Syndrome as originally hypothesized, rare germline mutations

have been identified in several types of familial cancers

(prostate, breast, ovarian, colorectal, kidney, thyroid, bladder

cancers, and leukemias) and rare somatic mutations have also

been detected in a variety of human tumors (Antoni et al.,

2007). Previous studies reported no (Ino et al., 2000) or low

frequency of CHEK2 mutations (approximately 6%) (Sallinen

et al., 2005) in small cohorts of human glioma patients. More-

over, Wang and colleagues recently reported a significant down-

regulation of CHEK2 expression in a group of glioma specimen

compared with normal control, and this reduction in expression

was partially due to promoter methylation (Wang et al., 2009).

Our analysis of TCGA showed that a high number of patients

(22%) present single copy loss of the chromosomal region con-

taining CHEK2, with a significant reduction of CHEK2 mRNA

expression, suggesting that it might represent an important

tumor suppressor in a subset of glioma patients. Evaluation of

CHEK2 mutations by resequencing, including TCGA data, is

complicated by the presence of paralogs in the genome

assembly. Therefore, although five CHEK2 somatic missense

mutations have been reported in the TCGA data set (Table S1),

at this time we consider the mutation rate to be undetermined.

We further observed that in human gliomas, CHEK2 alterations
Can
could co-occur with TP53 alterations (either TP53 mutations/

loss or MDM2 amplifications). This finding correlates with our

mouse studies that demonstrate that although p53 and Chk2

are epistatic in terms of glioma-free survival, loss of Chk2 could

lead to the development of more aggressive gliomas when

combined with p53 defects.

The ATM/Chk2/p53 Axis Suppress PDGF-Induced
Glioma Formation in Mice
PDGF-pathway activation, that is primarily ligand-driven, has

been recently shown to represent one of the three major signal

transduction pathways that characterize different GBM

subclasses, together with EGFR activation and NF1 loss

(Brennan et al., 2009; Verhaak et al., 2010). The RCAS/PDGF

glioma model has been extensively used to study diverse

aspects of glioma biology and has been shown to produce

tumors that closely resemble human GBMs (Huse and Holland,

2009; Hambardzumyan et al., 2008). Using this somatic cell

gene transfer methodology, we showed that the ATM/Chk2/

p53 pathway is required for glioma tumor suppression in mice,

and loss of any of those genes both shortens tumor latency

and leads to a more aggressive phenotype, increasing the

frequency of high-grade tumors (GBMs). The role of the ATM/

Chk2/p53 pathway on tumor suppression can be attributed to

its influence on the induction of apoptosis as well as on the

regulation of DNA damage dependent checkpoints. Genetic

contexts in which apoptosis and checkpoints are individually

defective are not strongly predisposed to malignancy. For

example, p53515C/515Cmice are defective in apoptosis, but retain

p53-dependent G1/S checkpoint functions. Relative to p53�/�

mice, in which both apoptosis and G1/S checkpoint control

are abrogated, tumor latency in p53515C/515C mice is markedly

increased (Liu et al., 2004). Similarly, in Mre11ATLD1/ATLD1

Chk2�/� mice, p53-dependent apoptosis is abrogated, but G1/

S checkpoint control is largely intact (Stracker et al., 2008).

Hence, concomitant loss of checkpoint control and apoptotic

regulation appears to undermine tumor suppression to a signifi-

cantly greater extent than disruption of either function singly. The

clear dependence on Chk2 for G1/S checkpoint control in NSCs

contrasts the situation observed in other Chk2�/� murine cell

types. This unique dependence on Chk2 has two general impli-

cations. First, it supports the view that increased susceptibility

to GBM in Chk2�/� mice may reflect the tumor suppressive

effects of the G1/S checkpoint in addition to Chk20s role in

promoting apoptosis. Presumably, both functions are required

to mitigate the oncogenic effects of spontaneous DNA damage

in developing GBM. Second, the data further support the view

that radioresistance in Chk2 proficient GBM may reflect the

protective effects of the G1/S checkpoint.

Activation of DDR in GBMs Correlates with Hypoxia
The current model of DDR activation in human tumors proposes

that the activation of DNA damage checkpoints acts as a barrier

against progression of tumors beyond their early, preinvasive

stage, and represent a strong selective pressure for mutation

in p53 or other DDR components (Bartek et al., 2007). In agree-

ment with this hypothesis, Bartkova and colleagues have shown

in a recent report a more pronounced DDR activation in low-

grade glioma than what they observed in a set of GBM specimen
cer Cell 18, 619–629, December 14, 2010 ª2010 Elsevier Inc. 625
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(Bartkova et al., 2010), suggesting the existence of a selective

pressure to lose DDR activity in the progression from low- to

high-grade tumors. Constitutive activation and aberrant loss of

DDR components has been shown in other tumor types, such

as lung and breast cancer (Bartkova et al., 2007). In GBM tissues,

we observed a small percentage of cells presenting markers of

an active DDR (such as gH2AX and Chk2 pT68), but notably

this activation correlates with region of hypoxia. H2AX is phos-

phorylated in a context-dependent manner by at least three

different kinases (ATM, ATR, and DNA-PK) of the PI3K-related

kinase family (PI3KK) (Hammond et al., 2003; Stiff et al., 2004;

Ward and Chen, 2001). Although our TCGA analysis showed

copy number alterations in either ATM or ATR, we cannot

exclude that the activity of these kinases is partially maintained

or, alternatively, partially compensated by other PI3KK kinases,

at least to some extent. This residual kinase activitymight also be

responsible for the phosphorylation of Chk2, that per se is homo-

zygously lost in only 0.35% (1/272) of the patients in the TCGA

analysis (data not shown). Although it appears there is a selective

pressure to reduce the activity of the ATM/Chk2 kinases in GBM,

this pathway might still maintain the ability to be partially acti-

vated under higher cellular stress condition such as hypoxia.

Proof of activation of the ATM/ATR signaling pathways by

hypoxia has been recently reported in vitro (Bencokova et al.,

2009; Freiberg et al., 2006; Gibson et al., 2005) and it was previ-

ously hypothesized to happen in human tumors (Bartkova et al.,

2005). ATM can be phosphorylated and activated during hypoxia

in the absence of DNA damage as detected by either comet

assay or 53BP1 focus formation (Freiberg et al., 2006). Subse-

quently Chk2 is also phosphorylated and activated in an ATM-

dependent manner (Bencokova et al., 2009; Gibson et al.,

2006). Interestingly, cells in the pseudopalisade rim do not

show focal staining of 53BP1, underlining the absence of detect-

able DNA damage. By contrast, 53BP1 is much less expressed

in those cells as compared with the tumor bulk (Figures 5A and

5H; Figure S3B). Several DNA repair factors (such as RAD51,

BRCA1 and 53BP1) are downregulated in hypoxic conditions

in vitro, and it has been proposed that this could lead to genomic

instability (Bencokova et al., 2009; Bristow and Hill, 2008).

53BP1 is an important component of both the DDR and also of

the DNA repair process. A reduction in 53BP1 levels is sufficient

to compromise the maintenance of chromosomal structure and

number (Ward et al., 2005); therefore, low levels of 53BP1 might

contribute to hypoxia-induced genomic instability in gliomas.

Clinical Perspective
Standard therapy for GBMs includes resection of the tumor

mass followed by concurrent radiotherapy and chemotherapy

using the alkylating agent temozolomide (TMZ). Nonetheless,

many GBM patients are refractory to radiotherapy and chemo-

therapy treatments. Understanding the mechanism of this resis-

tance will be instrumental for the development of new treatment

modalities for gliomas. Previous studies reported that Chk2 gene

silencing prevented a TMZ-induced G2 arrest (Hirose et al.,

2005), whereas pharmacological targeting of Chk1 increased

TMZ cytotoxicity (Hirose et al., 2001). Moreover, dual pharmaco-

logical inhibition of Chk1 and Chk2 kinases has been shown to

revert the radioresistance of a subpopulation of glioma cells

in vitro (Bao et al., 2006).
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In this report, we demonstrate that genetic loss of Chk2

protects glioma cells from IR-induced apoptosis in vivo and

prevents the activation of DNA damage-induced cell-cycle

checkpoints. Most importantly, this lack of response to IR also

abolishes the IR-mediated survival benefit observed in Chk2-

proficient glioma-bearing mice. Our results somehow differ

from what Bao and colleagues had previously shown

(Bao et al., 2006). In their experimental settings, they observed

an increase in radiosensitivity of glioma stem-like cells upon

treatment with the sponge alkaloid debromohymenialdisine

(DBH) that inhibits both the Chk1 and Chk2 kinases. It is possible

that the phenotypes they observed are primary related to the

DBH effect on Chk1 activity. Even though our data point to an in-

dispensible role of Chk2 in IR response in gliomas, we believe

that it might be too early to conclude whether this evidence

can be generalized to other components of the DDR, considering

the high complexity of this signaling pathway. Our data do indi-

cate that specific pharmacological inhibition of Chk2 may not

be an effective treatment for glioma patients, though genetic or

pharmacological inactivation of other elements of the DDR,

such as Chk1, might results in increased sensitivity to IR or other

treatment modalities that inflict DNA damage.

EXPERIMENTAL PROCEDURES

Human Tissue Specimens

Following informed consent, tumor samples classified as GBM based on

World Health Organization (WHO) criteria were obtained from patients under-

going surgical treatment in accordance with Memorial Sloan Kettering Cancer

Center Review Board. Tissues were processed as described below. Normal

human brain tissues were purchased fromMillipore (#TMA3001-4) and Analyt-

ical Biological Services (Wilmington, DE).

Histology, Immunohistochemistry, and TUNEL Assay

Tissues were fixed in 10% neutral buffered formalin and subsequently

embedded in paraffin, following standard procedures. Immunohistochemical

staining was performed on 5 mmsections of formalin-fixed/paraffin-embedded

tissues, using a Discovery XT automated staining processor (Ventana Medical

Systems, Inc.). The following antibodies were diluted in PBS 2%BSA as follow:

gH2AX (Upstate, #07-164) 1:100, anti-phospho Chk2 (Thr68) (Cell Signaling,

#2661) 1:100, anti-53bp1 (Novus, #NB100-304) 1:800, anti-HIF1a (Chemicon,

#AB3883) 1:100, Ki-67 (Dako, #M7240) 1:100, anti-GFAP (Dako, #Z0334)

1:2000, anti-Olig2 (Millipore, #AB9610) 1:400, anti-phospho-Histone H3

(Ser10) (Millipore, #06-750) 1:800. Images from each tumor were acquired

with a Nikon Eclipse E400 microscope connected to a Nikon Digital Slight

camera system.

The TUNEL assay was performed with a terminal transferase recombinant

kit (Roche, #333-574-001) on an automated staining processor (Discovery

XT, Ventana Medical Systems, Inc.).

For quantification of immunohistochemical and TUNEL staining, images

were acquired with a Zeiss Imager Z1 microscope using an automated stage,

and subsequently analyzed using the HistoQuest image analysis software

(Tissue Gnostics, Austria). Briefly, the HistoQuest software use a specific algo-

rithm to identify the nucleus of each cells, it measures the DAB intensity stain-

ing (brown nuclei) and gives you the percentage of positive cells (brown nuclei/

total nuclei). With exception of the necrotic cells inside the pseudopalisades,

no TUNEL-positive cells were detected in the mock irradiated samples (data

not shown). Because the number and the size of the pseudopalisades highly

variable in different tumors, these areas were excluded from the quantification

of TUNEL-positive cells in the irradiated samples.

Mice

Nestin-tva mice have been previously described (Holland et al., 1998). p53�/�

mice were obtained from The Jackson Laboratory. All animal experiments
.
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were done in accordance with protocols approved by the Institutional Animal

Care and Use Committee of Memorial Sloan-Kettering Cancer Center and fol-

lowed National Institutes of Health guidelines for animal welfare. Genotyping

primers will be provided on request.

Cell Culture, Transfection, and Neurosphere Preparation

DF1 cells (ATCC) were grown at 39�C in DMEM (ATCC) containing 10% FBS

(PAA, The Cell Culture Company, USA). DF1 cells were transfected with the

RCAS-PDGF viral plasmid, using Fugene 6 Transfection reagent (Roche),

accordingly to manufacturer’s protocol.

Mouse tumor neurospheres and normal neuronal stem cells (derived from

the whole brain of newborn mice [p1–p3]) were prepared by enzymatic

dissociation and low-speed centrifugations as previously described (Bleau

et al., 2008). Normal brain cortex or tumors were dissected and collected in

13 Earle’s balanced salt solution (EBSS) (GIBCO, USA). The tissue was enzy-

matically digested in Earle’s balanced salt solution containing 12%papain and

10 mg/ml DNase at 37�C for 15 min, with subsequent inactivation using

ovomucoid (1 mg/ml) (Worthington, Lakewood, NJ, USA). The cell suspension

was consecutively washed and resuspended to obtain a single cell suspen-

sion. For neurosphere culture, cells were seeded at 53 104 cells/ml and grown

in neurosphere medium from NeuroCult (Stem Cell Technologies, Inc.,

Vancouver, BC, Canada) according to the manufacturer. Themedium consists

in NSC Basal medium, mouse NSC Proliferation Supplements, 10 ng/ml EGF,

20 ng/ml basic-FGF, and 1 mg/ml Heparin. Fresh medium was replaced into

the cultures every 48–72 hr, and tumor stem-like cells were propagated as

neurospheres by serial dilution.

Generation of Murine Gliomas

Ntv-a mice, and procedures for RCAS-mediated gliomagenesis have been

described previously (Holland et al., 1998; Holland and Varmus, 1998). After

injection of the RCAS-PDGF virus during the newborn period, mice were

aged until they developed symptoms of disease (lethargy, poor grooming,

weight loss, macrocephaly).

Cell-Cycle Analysis

Cell-cycle checkpoints analysis were performed as described (Theunissen

and Petrini, 2006). For the G1/S checkpoint studies, BrdU (10 mM) was added

in the culture medium for 2 hr, before ethanol fixation. Staining was performed

using an anti-BrdU-FITC (BD PharMingen). For the G2/M checkpoint studies,

we used the anti-phospho-Histone H3 (Ser10) described above. Samples

were acquired using a Becton Dickinson FACSCalibur flow cytometer and

analyzed with the Flowjo software.

Radiation

Neurospheres cultures were irradiated using a Cs-137 source (dose rate

200 cGy/min- Shepherd Mark-1). Tumor-bearing mice were irradiated using

a Cs-137 source (Gammacell 40 Exactor, MDS Nordion). For survival analysis,

mice were sedated with ketamine and xylazine, and irradiation of the head was

done using a X-RAD 320 from Precision X-Ray at 115 cGy/min (the rest of the

mouse was shielded with a lead jig).

Statistical Analysis

Results were subjected to statistical analysis using GraphPad Prism v5.0 soft-

ware. Survival curves were analyzed using the Kaplan-Meier method, with

groups compared by respective median survival of number of days taken to

reach 50% morbidity; log rank p value was measured using the Mantel-Cox

test. Two-tailed t test has been used for other analysis.
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