120 research outputs found

    Artificially lit surface of Earth at night increasing in radiance and extent

    Get PDF
    This is the author accepted manuscript. The final version is available from AAAS via the DOI in this record.A central aim of the “lighting revolution” (the transition to solid-state lighting technology) is decreased energy consumption. This could be undermined by a rebound effect of increased use in response to lowered cost of light. We use the first-ever calibrated satellite radiometer designed for night lights to show that from 2012 to 2016, Earth’s artificially lit outdoor area grew by 2.2% per year, with a total radiance growth of 1.8% per year. Continuously lit areas brightened at a rate of 2.2% per year. Large differences in national growth rates were observed, with lighting remaining stable or decreasing in only a few countries. These data are not consistent with global scale energy reductions but rather indicate increased light pollution, with corresponding negative consequences for flora, fauna, and human well-being.This article is based upon work from COST Action ES1204 LoNNe, supported by COST (European Cooperation in Science and Technology). The authors acknowledge the funding received by ERA-PLANET (www.era-planet.eu) funded by the EC as part of H2020 (contract no. 689443). NOAA’s participation was funded by NASA’s VIIRS science program, contract number NNH15AZ01I. ASM’s contribution was funded by ORISON project (H2020-INFRASUPP-2015-2) Cities at Night

    Innovation in citizen science – perspectives on science-policy advances

    Get PDF
    Citizen science is growing as a field of research with contributions from diverse disciplines, promoting innovation in science, society, and policy. Inter- and transdisciplinary discussions and critical analyses are needed to use the current momentum to evaluate, demonstrate, and build on the advances that have been made in the past few years. This paper synthesizes results of discussions at the first international citizen science conference of the European Citizen Science Association (ECSA) in 2016 in Berlin, Germany, and distills major points of the discourse into key recommendations. To enhance innovation in science, citizen science needs to clearly demonstrate its scientific benefit, branch out across disciplines, and foster active networking and new formats of collaboration, including true co-design with participants. For fostering policy advances, it is important to embrace opportunities for policy-relevant monitoring and policy development and to work with science funders to find adequate avenues and evaluation tools to support citizen science. From a society angle it is crucial to engage with societal actors in various formats that suit participants and to evaluate two-way learning outcomes as well as to develop the transformative role of science communication. We hope that these key perspectives will promote citizen science progress at the science-society-policy interface

    11 pressing research questions on how light pollution affects biodiversity

    Get PDF
    Artificial light at night (ALAN) is closely associated with modern societies and is rapidly increasing worldwide. A dynamically growing body of literature shows that ALAN poses a serious threat to all levels of biodiversity—from genes to ecosystems. Many “unknowns” remain to be addressed however, before we fully understand the impact of ALAN on biodiversity and can design effective mitigation measures. Here, we distilled the findings of a workshop on the effects of ALAN on biodiversity at the first World Biodiversity Forum in Davos attended by several major research groups in the field from across the globe. We argue that 11 pressing research questions have to be answered to find ways to reduce the impact of ALAN on biodiversity. The questions address fundamental knowledge gaps, ranging from basic challenges on how to standardize light measurements, through the multi-level impacts on biodiversity, to opportunities and challenges for more sustainable use

    Assessing the ecological impacts of invasive species based on their functional responses and abundances

    Get PDF
    Invasive species management requires allocation of limited resources towards the proactive mitigation of those species that could elicit the highest ecological impacts. However, we lack predictive capacity with respect to the identities and degree of ecological impacts of invasive species. Here, we combine the relative per capita effects and relative field abundances of invader as compared to native species into a new metric, “Relative Impact Potential” (RIP), and test whether this metric can reliably predict high impact invaders. This metric tests the impact of invaders relative to the baseline impacts of natives on the broader ecological community. We first derived the functional responses (i.e. per capita effects) of two ecologically damaging invasive fish species in Europe, the Ponto-Caspian round goby (Neogobius melanostomus) and Asian topmouth gudgeon (Pseudorasbora parva), and their native trophic analogues, the bullhead (Cottus gobio; also C. bairdi) and bitterling (Rhodeus amarus), towards several prey species. This establishes the existence and relative strengths of the predator-prey relationships. Then, we derived ecologically comparable field abundance estimates of the invader and native fish from surveys and literature. This establishes the multipliers for the above per capita effects. Despite both predators having known severe detrimental field impacts, their functional responses alone were of modest predictive power in this regard; however, incorporation of their abundances relative to natives into the RIP metric gave high predictive power. We present invader/native RIP biplots that provide an intuitive visualisation of comparisons among the invasive and native species, reflecting the known broad ecological impacts of the invaders. Thus, we provide a mechanistic understanding of invasive species impacts and a predictive tool for use by practitioners, for example, in risk assessments

    Azimuthal anisotropy in S+Au reactions at 200 A GeV

    Get PDF
    Azimuthal correlations of photons produced at mid-rapidity in 200 A GeV S + Au collisions have been studied using a preshower photon multiplicity detector in the WA93 experiment. The Fourier expansion method has been employed to estimate the event plane via the anisotropy of the event as a function of centrality. The event plane correlation technique has been used to determine the true event anisotropy, beyond the anisotropy which arises due to finite multiplicity. The VENUS event generator with rescattering and proper simulation of the detector response can explain only a portion of the observed anisotropy. The residual anisotropy is found to be of the order of 5% for semi-central collisions. This suggests that directed collective flow of the produced particles is present at SPS energies. (C) 1997 Published by Elsevier Science B.V

    Trait-mediated indirect effects of predatory fish on microbial mineralization in aquatic sediments

    No full text
    Sediment‐dwelling zoobenthos stimulate the mineralization of organic matter and alter nutrient cycling by aerating the sediment via burrows, by feeding on detritus, and by redistributing particles. Here we experimentally revealed that abundant benthic chironomids (Chironomus riparius) can perceive predatory fish (Rutilus rutilus) via chemical cues (kairomones) and spend less time foraging at the sediment surface and more time hiding in their burrows. This predator avoidance behavior significantly increased the exposure of freshly deposited organic particles to oxygen by reducing their burial to subsurface layers and by enhancing the aeration of subsurface layers via burrow ventilation, conditions that together increased the rate of organic matter mineralization. These results demonstrate that predatory fish can exert trait‐mediated effects on benthic communities that in turn alter basic ecosystem processes related to nutrient cycling
    • 

    corecore