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Abstract 

 

Aquatic and terrestrial ecosystems are linked by fluxes of carbon and nutrients in 

riparian areas. Processes that alter these fluxes may therefore change the diet and 

composition of consumer communities. We used stable carbon isotope (δ13C) 

analyses to test whether the increased abundance of aquatic prey observed in a 

previous study led to a dietary shift in riparian consumers in areas illuminated by 

artificial light at night (ALAN). We measured the contribution of aquatic-derived 

carbon to diets in riparian arthropods in experimentally lit and unlit sites along an 

agricultural drainage ditch in northern Germany. The δ13C signature of the spider 

Pachygnatha clercki (Tetragnathidae) was 0.7‰ lower in the ALAN-illuminated site 

in summer, indicating a greater assimilation of aquatic prey. Bayesian mixing models 

also supported higher intake of aquatic prey under ALAN in summer (34% vs. 21%). 

In contrast, isotopic signatures for P. clercki (0.3 ‰) and Pardosa prativaga (0.7‰) 

indicated a preference for terrestrial prey in the illuminated site in summer. 

Terrestrial prey intake increased in spring for P. clercki under ALAN (from 70% to 

74%) and in spring and autumn for P. prativaga (from 68% to 77% and from 67% to 

72%) and Opiliones (from 68% to 72%; 68% to 75%). This was despite most of the 

available prey (up to 80%) being aquatic in origin. We conclude that ALAN changed 

the diet of riparian secondary consumers by increasing the density of both aquatic 

and terrestrial prey. Dietary changes were species- and season-specific, indicating 

that the effects of ALAN may interact with phenology and feeding strategy. Because 

streetlights can occur in high density near freshwaters, ALAN may have widespread 

effects on aquatic-terrestrial ecosystem linkages. 
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Introduction 

 

Complex trophic connections among organisms can extend across ecosystem 

boundaries (Polis et al. 1997). This is particularly evident in riparian zones where 

fluxes of nutrients and organic matter link adjacent aquatic and terrestrial 

ecosystems (Baxter et al. 2005). Such fluxes can cause a strong bottom-up effect for 

consumers in receiving habitats as resource subsidies (Polis et al. 1997, Nakano 

and Murakami 2001, Richardson et al. 2010). Quantifying these resource exchanges 

and measuring their effects on consumers is crucial for understanding the strength 

and the direction of the interaction of such coupled ecosystems (Marczak et al. 2007, 

Hoekman et al. 2011). 

Abiotic and biotic factors both can influence spatial and temporal variation in 

the availability and use of aquatic subsidies in riparian zones (Sabo and Power 2002, 

Paetzold et al. 2005). The importance of aquatic subsidies generally decreases with 

distance from the stream edge. A recent review found the density of aquatic insects 

to be reduced by 50% after only 1.5 m from the water’s edge, with a small portion of 

this subsidy (10%) moving much farther away (>500 m) (Muehlbauer et al. 2014). 

Seasonal variation in aquatic insect emergence results in varying contributions of 

aquatic subsidies to riparian spiders (Nakano and Murakami 2001, Kato et al. 2004, 

Paetzold et al. 2005). The natural dynamic of subsidy exchange between aquatic 

and terrestrial ecosystems is also influenced by anthropogenic environmental 

changes (reviewed in Schulz et al. 2015, Larsen et al. 2016). Increased water 
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temperature can cause earlier reproduction and emergence in aquatic insects with 

faster larval development (Harper and Peckarsky 2006), thereby affecting the timing 

of aquatic subsidy availability in riparian areas. Faster larval development and 

smaller adult body size was observed in drying streams (Shama and Robinson 2006, 

Jannot et al. 2008, Mikolajewski et al. 2015). Removal of the natural riparian 

vegetation can decrease inland dispersal and flight activity of aquatic insects 

(Petersen et al. 1999). Gergs et al. (2014) also found that the introduction of the 

invasive amphipod Dikerogammarus villosus reduced emergence of chironomids. 

Artificial light at night (ALAN) is a globally pervasive alteration of the 

landscape (Hölker et al. 2010, Kyba et al. 2017) that is particularly widespread near 

freshwaters (e.g., streams, lakes), where human populations are often concentrated 

(Kummu et al. 2011). The effect of ALAN on these ecosystems can be substantial, in 

particular on aquatic insects that live as larvae in the water and then emerge as 

flying adults (Manfrin et al. 2017). ALAN has been found to decrease mean body 

size and taxonomic richness (family-level) in emerging aquatic insects (Meyer and 

Sullivan 2013). ALAN also attracts post-emerging aquatic insects into adjacent 

riparian ecosystems, thereby disrupting their natural dispersal patterns (Horvath et 

al. 2009, Meyer and Sullivan 2013, Perkin et al. 2014). In some cases, ALAN has 

been found to increase aquatic insect mortality by exhaustion or increased predation 

(Eisenbeis 2006, Szaz et al. 2015). All of these ALAN-induced alterations have the 

potential to significantly alter the energy flows between aquatic and terrestrial 

ecosystems.  

A recent study (Manfrin et al. 2017) compared experimentally lit traps with 

control (dark) traps and reported a 3-fold increase in aquatic insect emergence and 

an increased abundance of both aquatic (70- to 918-fold) and terrestrial flying insects 
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(34- to 81-fold) in an ALAN-illuminated area. There were significant changes in the 

abundance of thick-jawed spiders P. clercki (Tetragnathidae) and harvestmen 

(Opiliones) in ALAN-exposed areas (see also Davies et al. 2012). We hypothesise 

that the change in taxonomic composition observed in the community of riparian 

invertebrate consumers exposed to artificial light was due to ALAN-induced bottom-

up effects, namely an increase in aquatic-derived resources available. We therefore 

expect higher relative consumption of aquatic insects by riparian invertebrate 

consumers in the illuminated field. To test this hypothesis, we used stable carbon 

isotope analyses to assess whether there was a shift in consumer stable isotope 

signature towards aquatic food sources. We tested whether there were dietary shifts 

in these two consumers, as well as in P. prativaga (Lycosidae) which was an 

abundant consumer in both sites. Bayesian mixing models of δ13C values were used 

to quantitatively infer the relative contribution of aquatic (e.g. non-biting midges, 

mayflies) and terrestrial prey (e.g. aphids, leaf hoppers) to the consumer diet under 

natural (control) and altered (treatment) light regimes across three seasons in 2013. 

 

Methods 

 

Study area and experimental design 

The field experiment was carried out using a large-scale experimental infrastructure 

fully described by Holzhauer et al. (2015). It is located in the Westhavelland Nature 

Park in northeastern Germany and within a 750-km² International Dark-Sky Reserve 

that is one of the least illuminated areas in Germany (International Dark Sky 

Association, IDA 2015) (Fig. 1b). In April 2012, two managed grassland areas of 

2400 m2 each with no prior exposure to ALAN were selected for an experiment to 
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study the impact of artificial light on aquatic and terrestrial ecosystems (Fig. 1a, c). 

To our knowledge this is among the largest field experiment studying the ecological 

impact of ALAN (Holzhauer et al. 2015, Manfrin et al. 2017). The two sites were 

environmentally very similar in characteristics other than artificial light (Holzhauer et 

al. 2015, Manfrin et al. 2017). Monitoring started at the beginning of May 2012, prior 

to any illumination. Both sites were equipped with 3 parallel rows (3 m, 23 m, and 43 

m away from the water) of 4 conventional 4.75 m high streetlights located 20 m apart 

(Fig. 1c) and with one 70-W high-pressure sodium lamp each (OSRAM VIALOX 

NAV-T Super 4Y). Maximum illuminance of the lit field was around 50 lux, minimum 

illuminance between two rows of street lamps was around 1 lux and minimum 

illuminance between two adjacent street lamps of the same row was around 10 lux 

(see Holzhauer et al. 2015 for further details about light distribution and spectral 

composition). Ecological monitoring started at the beginning of May 2012, prior to 

any illumination. From July 25 onward, one site (the treatment) was illuminated at 

night, i.e., one set of streetlights was switched on between civil twilight at dusk and 

dawn. The control (dark) site remained dark yet provided identical physical structure 

(see Holzhauer et al. 2015 for further details). 

 

Study species 

We studied four consumer species that exhibited significant differences in 

abundance between lit and dark traps (Manfrin et al.2017): the spider P. clercki 

(Tetragnathidae) and three long-legged harvestmen species (Opiliones). Opiliones 

species composition varied seasonally, thus we studied Rilaena triangularis in 

spring, Nelima sempronii and Phalangium opilio in summer and N. sempronii in 

autumn. For statistical analyses (see below), data from these three species of 
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Opiliones were combined. Adults of P. clercki are night-active visual hunters and do 

not use webs (Keer et al. 1989). This is an atypical feeding strategy for 

Tetragnathidae as most species build webs and are sit-and-wait predators. P. 

prativaga (Lycosidae) did not exhibit any difference in abundance due to ALAN 

(Manfrin et al. 2017), but was included in the present study because it is a dominant 

species at the study sites. P. prativaga is a day-active spider that catches prey 

without using a web (Kuusk and Ekbom 2010). Opiliones are mainly active at night 

(Williams 1962) and were almost exclusively caught at night in our experiment 

(Manfrin et al. 2017). Opiliones either ambush live prey or feed on dead animals. 

They do not employ webs (Pinto-da-Rocha et al. 2007).  

 

Sample collection 

Emerging adult aquatic insects (predominantly Ephemeroptera, Trichoptera and 

Chironomidae) were collected using four emergence traps per site, one placed on 

the water surface in front of each street light (Fig.1c, d). Sampling of emerging 

insects occurred monthly from May to October 2013 except in July when sampling 

occurred weekly because emergence rates were very high. At each time, sampling 

was continuous for 128 - 192 hours. Aquatic and terrestrial flying insects 

(predominantly Ephemeroptera, Lepidoptera and Coleoptera) were collected using 

12 air eclector traps per site consisting of two transparent plexiglas panels. Traps 

were placed 0.5 m below each streetlight (Fig.1c, d). Ground-dwelling arthropods 

were collected using 24 pitfall traps per site, positioned between and under the 

streetlamps at different distances from the ditch (Fig.1c, d). Air eclector and pitfall 

trap sampling occurred bi-weekly from May to October 2013. Sampling always 

occurred on rainless nights within one night of each half-moon phase (first and third 
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quarter, s. a. Holzhauer et al. 2015). All samples were stored in 70% not denaturated 

ethanol for a period no longer than 6 months (Sarakinos et al. 2002). All animals 

were sorted, counted and identified to the lowest taxonomic level possible under a 

binocular microscope and using taxonomical literature (Roberts 1995, Schaefer 

2010, Stresemann 2011).  

 

Stable isotope analysis 

Stable isotopes have been widely used to quantify carbon fluxes within and between 

ecosystems and to better understand riparian food web interactions. A difference in 

the uptake of CO2 in water and air (Rounick and Winterbourn 1986, Peterson and 

Fry 1987) makes the stable carbon isotope signal differ between aquatic and 

terrestrial primary producers. Organisms that consume different proportions of 

aquatic- and terrestrial-derived sources can therefore exhibit different δ13C values, 

as the carbon isotopes change (fractionate) little between prey and predator (e.g. 

Kato et al. 2004). Akamatsu et al. (2004), Baxter et al. (2005) and Paetzold et al. 

(2005) all provide examples of how stable isotope data indicate that many riparian 

consumers rely on aquatic subsidies in the form of emergent insects. In fact, 

isotopes have indicated that aquatic-derived sources can constitute up to 50% of the 

carbon in the diet of Tetragnathidae orb-weaver spiders inhabiting riparian canopies 

(Kelly et al. 2015) and temperate forests (Krell et al. 2015), while potentially 

approaching 100% for individuals inhabiting meadows along riparian areas in 

temperate regions (Krell et al. 2015) and along desert streams (Sanzone et al. 

2003). 

We analysed a total of 294 consumer individuals (P. clercki, n = 116; P. 

prativaga, n = 120; and Opiliones, n = 57) and 544 prey individuals (aquatic, n = 165; 
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terrestrial, n = 379) for δ13C. We inspected at least 9 individuals of each consumer 

and 4 individuals of each potential prey taxon (10 taxa were considered potential 

prey; Supplementary material Appendix 1 Table A1) for each site (control, treatment) 

and season (spring, summer, autumn). Potential prey was selected based on direct 

field observations and literature (Nyffeler and Benz 1988, Pinto-da-Rocha et al. 

2007). Selected samples were washed with distilled water in the laboratory, oven-

dried at 70°C for 4 days, and ground to a fine powder using a milling machine 

(Pulveristette 23; Fritsch GmbH, Germany). An aliquot of each sample (0.5 - 2 mg) 

was weighed on a microbalance (Sartorius, Germany) and loaded into tin capsules 

(Costech Analytical Technologies, Valencia, CA) for stable isotope analysis. Lipids 

were not extracted from the samples. A preliminary comparison performed on five 

different taxa (Supplementary material Appendix 1 Fig. A1) found no difference 

between δ13C values of fat- extracted and control samples (t-test, p > 0.05) 

(Supplementary material Appendix 1 Fig. A1 for fat extraction methodology). 

We used an elemental analyser (Flash EA; Thermo Finnigan, Bremen, 

Germany) connected via a continuous flow system to an isotope ratio mass 

spectrometer (Delta V Advantage, Thermo Finnigan, Bremen, Germany) to analyse 

the δ13C of CO2 gas obtained after sample combustion. The sample isotope ratios 

were compared with international standards (USGS-24) within each run (Gonfiantini 

et al. 1995, Voigt et al. 2003). The notation used (δ) expresses sample carbon 

isotope ratios as parts per thousand (‰) differences to international standards of 

Vienna Pee Dee Belemnite (Slater et al. 2001). The instrument precision assessed 

as the standard deviation of internal standards within each run was always better 

than 0.1‰. 
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Statistical analyses 

Because our aim was to test whether consumer diet shifted as a result of changing 

relative abundances of aquatic and terrestrial prey, prey taxa were pooled and 

classified as aquatic or terrestrial in origin. Pooling multiple source species into 

biologically meaningful groups is the recommended practise when within-group 

isotopic variation is smaller than between-group variation, providing more 

constrained and less diffuse solutions of models using isotope values (Phillips et al. 

2005, Phillips et al. 2014). We also corrected consumer δ13C for trophic fractionation 

by 1 ‰ (DeNiro and Epstein 1978, Akamatsu et al. 2004).  

Differences in prey and consumer δ13C were analysed with linear mixed-effect 

(LME) models using the lme4 package (Bates et al. 2007) for R (R Core Team 

2015). Fixed factors for the prey model were “habitat” (aquatic or terrestrial), “site” 

(control or treatment), “season” (spring: May – June; summer: July – August; 

autumn: September – October) and their interactions. Fixed factors for the consumer 

model were “taxa” (i.e. P. clercki, P. prativaga, Opiliones), “site”, “season” and their 

interactions. As post-hoc pairwise comparison, another LME model was used for 

each of the three consumer taxa within each season, in which “site” was a unique 

fixed factor. All LME models considered “trap” nested in “site” as random factors to 

account for multiple observations. Each LME model was compared with a reduced 

model (i.e. without the fixed factors) using a likelihood ratio test (Pinheiro and Bates 

1995). The distribution of residuals was assessed using Wilk-Shapiro tests (Shapiro 

and Wilk 1965) and qq-plots (Wilk and Gnanadesikan 1968). To control for inflated 

false discovery rates, we used Benjamini-Hochberg corrected α-values (Waite and 

Campbell 2006). 
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In addition to LME models testing for significance, we used model-based 

estimates of the relative contribution of aquatic and terrestrial food sources to 

consumer diets using the mixing model package SIAR (Parnell and Jackson 2013) 

for R. SIAR uses Bayesian inference to calculate the most likely set of dietary 

proportional contributions given the isotopic ratios in a set of possible food sources 

and consumers (Parnell et al. 2010). This generates potential dietary solutions as 

Dirichlet probability distributions with mean, mode, and levels of uncertainty (95% 

credibility intervals). We ran 1 million iterations, thinned by 300 and with an initial 

discard of the first 40,000 iterations. Control and treatment sites were compared 

across the three seasons in 2013.  

 

Results 

 

δ13C was significantly lower in aquatic prey (-34.0 ± 2.2‰) compared to terrestrial 

prey (-26.5 ± 1.24‰) (Table 1; Fig. 2a, b; Supplementary material Appendix 1 Table 

A1). There were no significant differences in prey δ13C mean values between control 

and lit sites (Fig. 2a, b; Table 1). In each consumer taxon, mean δ13C was more 

similar to that of terrestrial prey then aquatic prey in both control and lit sites (Fig. 3a, 

b, c; Supplementary material Appendix 1 Table A1). Nonetheless, consumer δ13C 

values varied between sites and among seasons (Table 1). The effect of treatment 

differed across taxa (site x taxa interaction; Table 1; Fig. 3a, b, c) and among 

seasons (site x season interaction; Table 1; Fig. 3a, b, c). In P. clercki, δ13C was 0.3 

‰ higher at the lit site than at the control site in spring (F1, 40 = 5.04; p =0.02) but was 

0.7 ‰ lower at the lit site in summer (F1, 36 = 8.20; p =0.007) (Fig. 3a). In P. 

http://en.wikipedia.org/wiki/Bayesian_statistics
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prativaga, δ13C was 0.7‰ higher at the lit site in spring (F1,40 = 16.7; p <0.001) (Fig. 

3b). In Opiliones, there were no differences among sites and seasons (Fig. 3c). 

Bayesian mixing models (SIAR) indicated that the contribution of terrestrial-

derived carbon to consumer diet in both control and treatment site ranged from 67-

80% (aquatic-derived carbon ranged from 20-32% in the control site and 20-34% in 

the treatment site) with variation occurring among taxa and seasons (see Fig. 4a, b, 

c; Supplementary material Appendix 1 Table A2). In summer, P. clercki at the lit site 

exhibited an increase in aquatic prey intake compared to the control site (from 21% 

to 34%) (Fig. 4a; Supplementary material Appendix 1 Table A2), whereas the 

contribution of aquatic prey to the diet of P. prativaga and Opiliones (N. sempronii 

and P. opilio in summer) was similar at both sites (Fig. 4b, c; Supplementary material 

Appendix 1 Table A2). In spring, Bayesian mixing models showed increased 

terrestrial prey intake at the lit site in P. clerckii (from 70% to 74%), Opiliones (from 

68% to 72%) and P. prativaga (from 68% to 77%) (Fig. 4a, b, c; Supplementary 

material Appendix 1 Table A2). In autumn, mixing models also indicated increased 

terrestrial prey intake at the lit site in P. prativaga (from 67% to 72%) and Opiliones 

(from 68% to 75%) (Fig. 4b, c; Supplementary material Appendix 1 Table A2). 

 

Discussion 

 

Aquatic subsidies are an important component of terrestrial ecosystems (Collier et al. 

2002, Sabo and Power 2002, Sanzone et al. 2003, Kato et al. 2003, Paetzold et al. 

2011). This study is among the first in situ experiments to test the effects of ALAN on 

aquatic subsidies. The effort and cost associated with such large-scale experiments 

often limits the assessment of un-replicated large-scale perturbations. However, 
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responses observed in our large-scale natural scenario were preferred over small-

scale laboratory experiments because we felt that the complexity of the research 

question could not be adequately addressed using laboratory experiments 

(Carpenter 1990, Carpenter 1996, Skelly and Kiesecker 2001, Davies and Gray 

2015, Barley and Meeuwig 2017). All the statistical results were obtained using 

analytical approaches that accounted for potential spatial and temporal relation (i.e. 

random effects). Bayesian statistic was used as non-frequentist analysis (Oksanen 

et al. 2001). These considerations, along with the detailed measurements of both 

biotic and abiotic components collected before and after the start of the experiment 

(see Holzauer et al. 2015), allows us to ascribe the observed ecological changes to 

ALAN with confidence. 

Terrestrial and aquatic prey species differed in δ13C, allowing us to 

differentiate those two source categories in the diet of our consumers, as expected 

(Kato et al. 2004). We observed no direct effect of ALAN on δ13C values of either 

aquatic or terrestrial prey, suggesting that ALAN did not affect their isotopic 

composition. We therefore conclude that changes in δ13C observed in the consumers 

in the treatment site resulted from changes in prey consumption.  

The proportion of aquatic prey (20 - 33%) in the diet of the riparian consumers at the 

control site indicates that aquatic insects were an important food source. These 

proportions are comparable to those observed in riparian canopies and forests in 

northern temperate regions (Briers et al. 2005, Krell et al. 2015), but lower than 

those observed in riparian areas of desert streams (Sanzone et al. 2003). The 

degree to which consumers respond to aquatic subsidies depends on the ratio of 

aquatic to terrestrial resources in the recipient habitat (Marczak et al. 2007). This 

ratio can strongly differ among habitats. For instance, stronger gradients in 
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productivity exist between aquatic and riparian zones in desert areas compared to 

temperate zones, with temperate riparian zones generally being more productive. In 

desert areas, the aquatic insect contribution for active-hunting spiders (i.e. not using 

webs) can reach 70% while in temperate zones, as in our case, aquatic insects can 

contribute from 15 to 50 % (Sanzone et al. 2003, Briers et al. 2005, Krell et al. 2015). 

In our control site, the spring and autumn values for the proportion of aquatic prey 

(30-33%) were higher than in summer (20-24%). This pattern indicates a seasonal 

change in consumer diet that may be explained by the seasonal availability of 

aquatic (emerging and flying) and terrestrial prey (flying and ground-dwelling) caught 

during the experiment at the control site (Supplementary material Appendix 1 Table 

A3). The relationship found between prey availability and prey consumption from 

generalist predators was similar to what has been found in other studies (Kato et al. 

2004, Paetzold et al. 2005, 2006). A seasonal pulse of aquatic subsidies is 

particularly common at northern temperate latitudes. In such regions, water 

temperature and photoperiod play an important role in regulating aquatic insect 

emergence and are seasonally variable (Corbet 1964, Brittain 1982, Paezold et al. 

2005).  

When exposed to ALAN in our study, P. clercki increased its assimilation of 

aquatic-derived carbon in summer according to both the isotopic signature and the 

Bayesian analysis of the diet. We propose that this shift in the spider diet was due to 

the large number of aquatic insects attracted to the light sources during the summer 

season. The number of aquatic insects caught at the treatment site at this time was 

approximately 25 times higher than in spring and 130 times higher than in autumn, 

and 87% of all collected insects (8000 individuals) were aquatic, compared to 15% 

(140 individuals) caught at the control site (Manfrin et al. 2017, Supplementary 



16 
 

material Appendix 1 Table A3). P. clercki is primarily a night-active spider, but 

extended its activity into the day when exposed to ALAN (Manfrin et al. 2017). It may 

be that P. clercki consumed exhausted or dead aquatic insects lying on the ground 

after flying around the lamps during the night. Although spiders rarely feed on dead 

prey, von Berg et al. (2012) found that 38% of the specimens of Pachygnatha 

degeeri opportunistically scavenged when dead prey were available. Alternatively, 

the illumination treatment might have exhausted the local terrestrial community 

(Eisenbeis 2006) thereby inevitably increasing the relative contribution of the aquatic 

subsidy, even if this in itself remains the same. Given the large number of aquatic 

insects in the traps, and no decrease in the number of terrestrial insects in the traps 

over the years (data not shown) we believe this to be a less likely explanation. 

The increased assimilation of aquatic-derived carbon found in P. clercki in 

summer was not observed in P. prativaga and Opiliones during the same period. 

Although the terrestrial prey did not increase as much as the aquatic prey did, they 

showed a marked increase in number in the lit traps (Supplementary material 

Appendix 1 Table A3). These taxa might simply have maintained their preference for 

larger-sized terrestrial prey over the numerous but smaller aquatic prey (Briers et al. 

2005). In contrast to P. clercki, P. prativaga and Opiliones did not exploit the 

additional extra hours of hunting-activity during the day (Manfrin et al. 2017), and 

therefore may not have utilized dead insects on the ground from the night before. 

Alternatively, the carbon derived from aquatic prey in summer, might not have been 

integrated into consumer tissues. These taxa may have allocated most of the food 

intake in this period to reproduction as metabolic carbon instead of structural carbon 

for somatic growth (Jespersen and Toft 2003, Bragg and Holmberg 2009). The 

isotopic signatures and analysis of the diet composition suggest an increased 
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terrestrial prey intake by P. clercki in spring and in P. prativaga and Opiliones (R. 

triangularis and N. sempronii) in spring and autumn when exposed to ALAN. The 

aquatic insects collected in the eclector traps (predominantly Chironomidae and 

Cloeon sp.) were smaller than many terrestrial taxa available as prey. Also, ALAN 

has been found to decrease mean body size and taxonomic richness (family-level) in 

emerging aquatic insects (Meyer and Sullivan 2013) leading to a community of 

aquatic prey that is dominated by even smaller individuals compared to natural 

conditions. This difference in biomass might explain why consumers increased the 

terrestrial prey intake under artificial illumination, with an overall lower number of 

available prey (in both spring and autumn) than in summer or with similar availability 

between aquatic and terrestrial prey in autumn (Manfrin et al. 2017, Supplementary 

material Appendix 1 Table A3). Dietary changes were species-specific and 

seasonably variable, indicating that the effects of artificial might strongly depend on 

the phenology of the subsidy sources and on both the phenology and feeding 

strategies of the consumers.  

Our results provide evidence that ALAN can influence the dietary composition 

of secondary consumers increasing their aquatic carbon assimilation as result of the 

increased flux of aquatic insects into riparian areas. However, such dietary changes 

were not consistent, varying among taxa and seasons. This was probably due to the 

relative high availability of terrestrial insects (highly productive) in the riparian zones 

of the study area. Because the effects of trophic subsidies on recipient ecosystems 

are usually stronger when the receiving system has low levels of resources (Marczak 

et al. 2007), in urban and semi-urban areas, where the pool of potential terrestrial 

prey in riparian areas is poor, the effects of ALAN on locally productive water bodies 

might have stronger effects. 
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A shift to more reliance on an aquatic- or terrestrial-derived diet can affect the 

flow of energy through the food-web. It is well known that spiders are important 

biological control agents (Riechert et al. 1984, Hodge 1999, Marc et al. 1999, 

Henschel et al. 2001). Dietary shifts observed under ALAN, arising from a temporary 

disproportionate availability of a specific prey type (e.g. aquatic prey), might release 

predatory pressure from species causing a displacement of predator-prey dynamics. 

In the case of semi-urban and agricultural areas, this might have consequences for 

the natural control of invertebrate pest populations (e.g. Aphidae, Auchenorrhyncha) 

by predation (Dixon 2000, Hassell 1978, Polis and Strong 1996).  

We assessed ALAN in the field and specifically in the context of an aquatic-

terrestrial ecotone. The experimental erection of street lights in a previously ALAN-

naïve area allowed us (1) to disentangle the effects of ALAN from other aspects of 

urbanization such as pollution, noise, and habitat alteration; and (2) to minimize the 

effects of potential long-term adaptations that may have already occurred in areas 

that have been lit for many generations. No isotope data were available from the 

period prior to illumination, thus we could not test whether the difference in diet 

composition existed prior to the treatment. Manfrin et al. (2017) observed no 

differences in consumer community composition and prey availability between the 

two sites prior to illumination. We therefore assumed that invertebrate consumers 

had the same diet composition.  

Our findings raise a number of new research questions that can now be 

studied mechanistically at smaller scales. We used high-pressure sodium lamps, 

which are considered to be relatively ‘insect friendly’ (Eisenbeis et al. 2006). The 

current increase in illumination and the global shift to the use of LED lamps with an 

emission peak in blue (Kyba et al. 2017) are both expected to increase the impact of 
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ALAN given the sensitivity of nocturnal invertebrates to short wavelength light (van 

Langevelde 2011, van Grunsven et al 2014, Pawson and Bader 2014). Our earlier 

work found that high-pressure sodium lights resulted in a shift in the biomass 

exchange between adjacent ecosystems (Manfrin et al. 2017), and here we 

observed a change in the diet composition of riparian consumers and conclude that 

is was due to this shift. This might have implications for ecosystem functioning and 

suggest we considering the potential ecological impacts of ALAN in lighting policy 

and landscape planning. 
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Figures and Tables 

 

Figure 1. Study area in the Westhavelland (Brandenburg; 52° 68’ 53’’ N, 12° 44’ 32’’ 

E) depicting treatment and control sites (each 60 x 40 m) located along an 

agricultural drainage ditch (a, b). The lower panels (c, d) depict the treatment site 

with streetlamps and sampling traps. Floating pyramidal emergence traps (triangles, 

n = 4) were placed adjacent to a lamp on the water surface of the drainage ditch. Air 

eclector traps were mounted below each lamp (grey circles, n = 12). Pitfall traps 

(quadrats, n = 24) were placed on the ground in multiple locations. The structural 

design of the control site was identical to the treatment site, yet streetlights were not 

switched on. Map data by Google Earth Pro (2011) (a) and Wiki-vr 

(https://en.wikipedia.org/wiki/File:Europe_blank_map.png) (b).  
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Figure 2. Comparison δ13C values between control and treatment sites is depicted 

for aquatic (a) and terrestrial (b) prey over the three seasons in 2013. Box plots 

depict the 25, 50 and 75 percentiles, and whiskers the highest and lowest values 

excluding outliers.  
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Figure 3. Comparison δ13C values between control and treatment sites is depicted 

for consumer taxa (a, b, c) over the three seasons in 2013. Box plots depict the 25, 

50 and 75 percentiles, and whiskers the highest and lowest values excluding 

outliers. In case of significant LME interaction, asterisks are used to indicate 

significant difference in the pairwise comparisons (*** = <0.001; ** = <0.01). A lower 

value indicates a larger proportion of aquatic prey in the diet.  
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Figure 4. Comparison of relative contribution (%) of aquatic prey to the diets of the 

consumer taxa (a, b, c) based on Bayesian isotope mixing models (SIAR) on δ13C 

values. The plots show 95% (middle rectangle), 75% and 25% (external rectangles) 

credibility intervals. Data are shown for control and treatment site across the three 

seasons in 2013. 
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Table 1. Results of linear mixed-effect models (LME) for prey and consumers using 

δ13C as a dependent variable. Independent variables for food sources and 

consumers are shown in the table. Asterisks are used to indicate significant main 

effect (*** = <0.001; ** = <0.01; * = <0.05). 

 

 Model X2 Factors F- statistic  

Prey 351.35*** Site F1,29=0.40 

  Habitat F1,110=754.22*** 

  Season F2,531=5.78** 

  Site x Habitat F1,110=0.34 

  Site x Season F2,531=0.05 

  Habitat x Season F2,534=1.54 

  Site x Habitat x Season F2,534=1.94 

Consumers 63.19*** Site F1,293=7.86** 

  Taxa F2,293=4.65* 

  Season F2,293=8.95*** 

  Site x Taxa F2,293=8.04*** 

  Site x Season F2,293=2.73* 

  Taxa x Season F4,293=2.95* 

    Site x Taxa x Season F4,293=1.48 
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Appendix 1 

 

 

Figure A1. Comparison showing no significant difference in δ13C values for samples 

in which lipids were extracted with samples in which were not (t-test >0.05). 10 

individuals for each of the 5 selected taxa and condition were analysed. Lipids were 

removed by Soxhlet extraction using a chloroform/methanol 2:1 solution and a 

Soxtherm Type SE406 (C. Gerhardt GmbH & Co. KG, Königswinter, Germany). Box 

plots depict the 25, 50 and 75 percentiles, and whiskers the greatest and least 

values excluding outliers.  
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Table A1. Stable carbon (δ13C) isotope ratios (Mean ± SD) and number of samples 

analysed for each source and consumer taxon in control and treatment site and 

across the three seasons in 2013. 

Group Species Season Site N δ13C (‰) 

Mean ± SD 

Aquatic Chironomidae Spring Control 4 -32.56 ± 1.05 

prey 
 

 Treatment 4 -35.50 ± 0.62 

 Cloeon dipterum  Control 10 -33.99 ± 1.24 

   Treatment 20 -33.93 ± 0.97 

 Chironomidae Summer Control 10 -36.82 ± 3.10 

 
 

 Treatment 7 -37.55 ± 1.06 

 Hydrophilidae  Control 5 -30.15 ± 3.58 

 
 

 Treatment 20 -31.80 ± 1.57 

 Cloeon dipterum  Control 0 _ 

   Treatment 12 -34.91 ± 2.13 

 Chironomidae Autumn Control 5 -35.34 ± 1.40 

 
 

 Treatment 9 -34.92 ± 1.22 

 Cloeon dipterum  Control 10 -34.67 ± 0.19 

 
 

 Treatment 10 -34.80 ± 0.36 

 Erythromma najas  Control 10 -34.42 ± 0.23 

 
 

 Treatment 10 -34.20 ± 0.22 

 Limnephilus binotatus  Control 10 -32.14 ± 0.11 

   Treatment 10 -32.11 ± 0.05 

Terrestrial Auchenorrhyncha Spring Control 5 -27.83 ± 1.20 

prey 
 

 Treatment 10 -27.45 ± 1.37 

 Chrysomelidae 
 

Control 6 -28.51 ± 0.16 

 
  

Treatment 8 -27.90 ± 0.62 

 Formicidae 
 

Control 10 -26.55 ± 0.39 

 
  

Treatment 20 -26.19 ± 0.54 

 Linyphiidae 
 

Control 12 -26.36 ± 0.42 

   Treatment 18 -26.46 ± 0.54 

 Auchenorrhyncha Summer Control 20 -26.85 ± 0.92 

 
 

 Treatment 20 -26.37 ± 1.88 

 Formicidae 
 

Control 15 -26.29 ± 0.57 
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Treatment 20 -26.29 ± 0.62 

 Linyphiidae 
 

Control 15 -26.86 ± 0.66 

 
  

Treatment 20 -26.22 ± 0.59 

 Stenorrhyncha 
 

Control 6 -26.56 ± 0.91 

   Treatment 5 -27.13 ± 1.19 

 Auchenorrhyncha Autumn Control 20 -26.26 ± 1.62 

 
 

 Treatment 20 -26.92 ± 1.77 

 Formicidae 
 

Control 20 -26.53 ± 0.48 

 
  

Treatment 20 -26.28 ± 0.65 

 Linyphiidae 
 

Control 20 -26.14 ± 0.72 

 
  

Treatment 20 -25.86 ± 0.48 

 Stenorrhyncha 
 

Control 20 -25.26 ± 1.37 

   Treatment 20 -25.29 ± 2.05 

Consumers Pachygnatha clercki 
Spring 

Control 20 -28.89 ± 0.26 

 
Treatment 20 -28.62 ± 0.46 

 Summer 
Control 18 -28.54 ± 0.64 

 
Treatment 18 -29.19 ± 0.75 

 Autumn 
Control 20 -28.59 ± 0.80 

 Treatment 20 -28.69 ± 0.75 

Pardosa prativaga 
Spring 

Control 20 -29.04 ± 0.52 

 
Treatment 20 -28.36 ± 0.53 

 Summer 
Control 20 -28.91 ± 0.58 

 
Treatment 20 -28.42 ± 0.43 

 Autumn 
Control 20 -28.50 ± 0.80 

 Treatment 20 -28.24 ± 0.71 

Rilaena triangularis 
Spring 

Control 10 -29.09 ± 0.82 

 Treatment 10 -28.72 ± 0.24 

Nelima sempronii/ 

Summer 
Control 9 -28.47 ± 0.44 

Phalangium opilio 

 
Treatment 10 -28.12 ± 0.29 

Nelima sempronii 
Autumn 

Control 10 -28.36 ± 0.63 

 
Treatment 8 -28.06 ± 0.47 
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Table A2. Bayesian mixing model statistics obtained from SIAR for the relative 

contribution of aquatic and terrestrial food sources to the diet of the analysed 

consumers for control and treatment site across the three seasons in 2013. 

Contribution values are shown as mode and mean and 95% credibility intervals are 

given.  

Consumers Season Site Prey min (95%)  Mode Mean  Max (95%)  

P
a
c
h
y
g
n

a
th

a
 c

le
rc

k
i 

Spring Control Terr 0.66 0.70 0.71 0.77 

  Aqua 0.23 0.30 0.29 0.34 

 Treatment Terr 0.69 0.74 0.74 0.79 

   Aqua 0.21 0.26 0.26 0.31 

Summer Control Terr 0.73 0.79 0.79 0.84 

  Aqua 0.16 0.21 0.21 0.27 

 Treatment Terr 0.57 0.67 0.65 0.73 

   Aqua 0.27 0.34 0.35 0.43 

Autumn Control Terr 0.61 0.67 0.66 0.72 

  Aqua 0.28 0.33 0.34 0.39 

 Treatment Terr 0.61 0.67 0.67 0.74 

    Aqua 0.26 0.33 0.33 0.39 

P
a
rd

o
s
a

 p
ra

ti
v
a
g
a

 

Spring Control Terr 0.63 0.68 0.69 0.75 

  Aqua 0.25 0.32 0.31 0.37 

 Treatment Terr 0.72 0.77 0.77 0.82 

   Aqua 0.18 0.23 0.23 0.28 

Summer Control Terr 0.69 0.76 0.75 0.81 

  Aqua 0.19 0.24 0.25 0.31 

 Treatment Terr 0.69 0.77 0.76 0.83 

   Aqua 0.17 0.23 0.24 0.31 

Autumn Control Terr 0.62 0.67 0.68 0.73 

  Aqua 0.27 0.33 0.32 0.38 

 Treatment Terr 0.66 0.72 0.73 0.79 

    Aqua 0.21 0.28 0.27 0.34 

O
p
ili

o
n

e
s
 

Spring Control Terr 0.58 0.68 0.68 0.77 

  Aqua 0.23 0.32 0.32 0.42 

 Treatment Terr 0.65 0.72 0.72 0.79 

   Aqua 0.21 0.28 0.28 0.35 

Summer Control Terr 0.70 0.80 0.79 0.88 
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  Aqua 0.12 0.20 0.21 0.30 

 Treatment Terr 0.69 0.80 0.80 0.90 

   Aqua 0.10 0.20 0.20 0.31 

Autumn Control Terr 0.61 0.68 0.69 0.77 

  Aqua 0.23 0.32 0.31 0.39 

 Treatment Terr 0.63 0.75 0.74 0.86 

    Aqua 0.14 0.25 0.26 0.37 
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Table A3. Number of individuals caught per hour of trap operation (CPUE; catch per 

unit effort) for aquatic and terrestrial adult flying insects and proportion (% of CPUE) 

of aquatic compared to terrestrial insects collected in the air eclector traps at the 

control and treatment site during the three seasons in 2013. Vales are shown as 

means and standard deviations. 

Sites Season CPUE aquatic CPUE terrestrial % aquatic 

Control Spring 0.44 ± 0.30 0.12 ± 0.16 72 ± 31 

 
Summer 0.87 ± 0.94 0.75 ± 0.73 49 ± 33  

  Fall 0.09 ± 0.12 0.17 ± 0.09 26 ± 26  

Treatment Spring 10.30 ± 4.91 1.73 ± 1.29 85 ± 11 

 
Summer 281.69 ± 443.92 35.26 ± 44.45 64 ± 27 

  Fall 1.24 ± 0.77 0.73 ± 0.29 60 ± 15  

 

 

 

 


