107 research outputs found

    CD95L Inhibition Impacts Gemcitabine-Mediated Effects and Non-Apoptotic Signaling of TNF-α and TRAIL in Pancreatic Tumor Cells

    Get PDF
    Despite the potential apoptotic functions, the CD95/CD95L system can stimulate survival as well as pro-inflammatory signaling, particularly through the activation of NFκB. This holds true for the TNF/TNFR and the TRAIL/TRAILR systems. Thus, signaling pathways of these three death ligands converge, yet the specific impact of the CD95/CD95L system in this crosstalk has not been well studied. In this study, we show that gemcitabine stimulates the expression of pro-inflammatory cytokines, such as IL6 and IL8, under the influence of the CD95/CD95L system and the pharmacological inhibitor, sCD95Fc, substantially reduced the expression in two PDAC cell lines, PancTuI-luc and A818-4. The stem cell phenotype was reduced when induced upon gemcitabine as well by sCD95Fc. Moreover, TNF-α as well as TRAIL up-regulate the expression of CD95 and CD95L in both cell lines. Conversely, we detected a significant inhibitory effect of sCD95Fc on the expression of both IL8 and IL6 induced upon TNF-α and TRAIL stimulation. In vivo, CD95L inhibition reduced xeno-transplanted recurrent PDAC growth. Thus, our findings indicate that inhibition of CD95 signaling altered the chemotherapeutic effects of gemcitabine, not only by suppressing the pro-inflammatory responses that arose from the CD95L-positive tumor cells but also from the TNF-α and TRAIL signaling in a bi-lateral crosstalk manner

    Acid-Sphingomyelinase Triggered Fluorescently Labeled Sphingomyelin Containing Liposomes in Tumor Diagnosis after Radiation-Induced Stress

    Get PDF
    In liposomal delivery, a big question is how to release the loaded material into the correct place. Here, we will test the targeting and release abilities of our sphingomyelin-consisting liposome. A change in release parameters can be observed when sphingomyelin-containing liposome is treated with sphingomyelinase enzyme. Sphingomyelinase is known to be endogenously released from the different cells in stress situations. We assume the effective enzyme treatment will weaken the liposome making it also leakier. To test the release abilities of the SM-liposome, we developed several fluorescence-based experiments. In in vitro studies, we used molecular quenching to study the sphingomyelinase enzyme-based release from the liposomes. We could show that the enzyme treatment releases loaded fluorescent markers from sphingomyelin-containing liposomes. Moreover, the release correlated with used enzymatic activities. We studied whether the stress-related enzyme expression is increased if the cells are treated with radiation as a stress inducer. It appeared that the radiation caused increased enzymatic activity. We studied our liposomes' biodistribution in the animal tumor model when the tumor was under radiation stress. Increased targeting of the fluorescent marker loaded to our liposomes could be found on the site of cancer. The liposomal targeting in vivo could be improved by radiation. Based on our studies, we propose sphingomyelin-containing liposomes can be used as a controlled release system sensitive to cell stress

    Protein Profiling of Serum Extracellular Vesicles Reveals Qualitative and Quantitative Differences After Differential Ultracentrifugation and ExoQuickTM Isolation

    Get PDF
    Solid tumor biopsies are the current standard for precision medicine. However, the procedure is invasive and not always feasible. In contrast, liquid biopsies, such as serum enriched for extracellular vesicles (EVs) represent a non-invasive source of cancer biomarkers. In this study, we compared two EV isolation methods in the context of the protein biomarker detection in inflammatory bowel disease (IBD) and colorectal cancer (CRC). Using serum samples of a healthy cohort as well as CRC and IBD patients, EVs were isolated by ultracentrifugation and ExoQuickTM in parallel. EV associated protein profiles were compared by multiplex-fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) and subsequent identification by mass spectrometry. Validation of gelsolin (GSN) was performed using fluorescence-quantitative western blot. 2D-DIGE resolved 936 protein spots in all serum-enriched EVs isolated by ultracentrifugation or ExoQuickTM. Hereof, 93 spots were differently expressed between isolation approaches. Higher levels of GSN in EVs obtained with ExoQuickTM compared to ultracentrifugation were confirmed by western blot (p = 0.0006). Although patient groups were distinguishable after both EV isolation approaches, sample preparation strongly influences EVs' protein profile and thus impacts on inter-study reproducibility, biomarker identification and validation. The results stress the need for strict SOPs in EV research before clinical implementation can be reached

    Ion channels in control of pancreatic stellate cell migration

    Get PDF
    Pancreatic stellate cells (PSCs) play a critical role in the progression of pancreatic ductal adenocarcinoma (PDAC). Once activated, PSCs support proliferation and metastasis of carcinoma cells. PSCs even co-metastasise with carcinoma cells. This requires the ability of PSCs to migrate. In recent years, it has been established that almost all “hallmarks of cancer” such as proliferation or migration/invasion also rely on the expression and function of ion channels. So far, there is only very limited information about the function of ion channels in PSCs. Yet, there is growing evidence that ion channels in stromal cells also contribute to tumor progression. Here we investigated the function of K(Ca)3.1 channels in PSCs. K(Ca)3.1 channels are also found in many tumor cells of different origin. We revealed the functional expression of K(Ca)3.1 channels by means of Western blot, immunofluorescence and patch clamp analysis. The impact of K(Ca)3.1 channel activity on PSC function was determined with live-cell imaging and by measuring the intracellular Ca2(+) concentration ([Ca(2+)](i)). K(Ca)3.1 channel blockade or knockout prevents the stimulation of PSC migration and chemotaxis by reducing the [Ca(2+)](i) and calpain activity. K(Ca)3.1 channels functionally cooperate with TRPC3 channels that are upregulated in PDAC stroma. Knockdown of TRPC3 channels largely abolishes the impact of K(Ca)3.1 channels on PSC migration. In summary, our results clearly show that ion channels are crucial players in PSC physiology and pathophysiology

    A Novel NHE1-Centered Signaling Cassette Drives Epidermal Growth Factor Receptor–Dependent Pancreatic Tumor Metastasis and Is a Target for Combination Therapy

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers principally because of early invasion and metastasis. The epidermal growth factor receptor (EGFR) is essential for PDAC development even in the presence of Kras, but its inhibition with erlotinib gives only a modest clinical response, making the discovery of novel EGFR targets of critical interest. Here, we revealed by mining a human pancreatic gene expression database that the metastasis promoter Na+/H+ exchanger (NHE1) associates with the EGFR in PDAC. In human PDAC cell lines, we confirmed that NHE1 drives both basal and EGF-stimulated three-dimensional growth and early invasion via invadopodial extracellular matrix digestion. EGF promoted the complexing of EGFR with NHE1 via the scaffolding protein Na +/H + exchanger regulatory factor 1, engaging EGFR in a negative transregulatory loop that controls the extent and duration of EGFR oncogenic signaling and stimulates NHE1. The specificity of NHE1 for growth or invasion depends on the segregation of the transient EGFR/Na +/H + exchanger regulatory factor 1/NHE1 signaling complex into dimeric subcomplexes in different lipid raftlike membrane domains. This signaling complex was also found in tumors developed in orthotopic mice. Importantly, the specific NHE1 inhibitor cariporide reduced both three-dimensional growth and invasion independently of PDAC subtype and synergistically sensitized these behaviors to low doses of erlotinib

    Metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis

    Get PDF
    Objective Current non-invasive diagnostic tests can distinguish between pancreatic cancer (pancreatic ductal adenocarcinoma (PDAC)) and chronic pancreatitis (CP) in only about two thirds of patients. We have searched for blood-derived metabolite biomarkers for this diagnostic purpose. Design For a case-control study in three tertiary referral centres, 914 subjects were prospectively recruited with PDAC (n=271), CP (n=282), liver cirrhosis (n=100) or healthy as well as non-pancreatic disease controls (n=261) in three consecutive studies. Metabolomic profiles of plasma and serum samples were generated from 477 metabolites identified by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. Results A biomarker signature (nine metabolites and additionally CA19-9) was identified for the differential diagnosis between PDAC and CP. The biomarker signature distinguished PDAC from CP in the training set with an area under the curve (AUC) of 0.96 (95% CI 0.93-0.98). The biomarker signature cut-off of 0.384 at 85% fixed specificity showed a sensitivity of 94.9% (95% CI 87.0%-97.0%). In the test set, an AUC of 0.94 (95% CI 0.91-0.97) and, using the same cut-off, a sensitivity of 89.9% (95% CI 81.0%-95.5%) and a specificity of 91.3% (95% CI 82.8%-96.4%) were achieved, successfully validating the biomarker signature. Conclusions In patients with CP with an increased risk for pancreatic cancer (cumulative incidence 1.95%), the performance of this biomarker signature results in a negative predictive value of 99.9% (95% CI 99.7%-99.9%) (training set) and 99.8% (95% CI 99.6%-99.9%) (test set). In one third of our patients, the clinical use of this biomarker signature would have improved diagnosis and treatment stratification in comparison to CA19-9
    • …
    corecore