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Abstract: Solid tumor biopsies are the current standard for precision medicine. However, the
procedure is invasive and not always feasible. In contrast, liquid biopsies, such as serum enriched for
extracellular vesicles (EVs) represent a non-invasive source of cancer biomarkers. In this study, we
compared two EV isolation methods in the context of the protein biomarker detection in inflammatory
bowel disease (IBD) and colorectal cancer (CRC). Using serum samples of a healthy cohort as well
as CRC and IBD patients, EVs were isolated by ultracentrifugation and ExoQuick™ in parallel. EV
associated protein profiles were compared by multiplex-fluorescence two-dimensional difference
gel electrophoresis (2D-DIGE) and subsequent identification by mass spectrometry. Validation of
gelsolin (GSN) was performed using fluorescence-quantitative western blot. 2D-DIGE resolved 936
protein spots in all serum-enriched EVs isolated by ultracentrifugation or ExoQuick™. Hereof, 93
spots were differently expressed between isolation approaches. Higher levels of GSN in EVs obtained
with ExoQuick™ compared to ultracentrifugation were confirmed by western blot (p = 0.0006).
Although patient groups were distinguishable after both EV isolation approaches, sample preparation
strongly influences EVs’ protein profile and thus impacts on inter-study reproducibility, biomarker
identification and validation. The results stress the need for strict SOPs in EV research before clinical
implementation can be reached.
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1. Introduction

Colorectal cancer (CRC) is the fourth leading cause of cancer death worldwide [1]. About 1–2%
of CRCs are associated with inflammatory bowel disease (IBD) which comprises a group of chronic
inflammatory disorders of the colon and small intestine. IBD-associated dysplasia is an important
marker for increased CRC risk [2]. However, histopathology diagnostics of IBD-associated mucosa
biopsies is clearly hampered and less reproducible among experts [3]. Thus, a non-invasive, clinically
reliable screening program requires disease-specific biomarkers that accurately detect IBD, precancerous
colorectal neoplasia and CRC at earliest stages.

Along with circulating tumor cells and circulating cell-free DNA, extracellular vesicles (EVs) are
considered to be a promising source for liquid biopsy-based biomarker discovery allowing non-invasive
screening, diagnostics, therapy guidance and repeated sampling for disease monitoring [4]. EVs
are membrane-bound particles, secreted in vivo by cells into the extracellular environment and
are detected in various biological fluids such as plasma, urine, saliva, ascites and bronchoalveolar
lavage fluid [5]. EVs are classified into three groups: apoptotic bodies (1000–5000 nm), microvesicles
(200–1000 nm) as well as exosomes (30–150 nm) and are found to play key roles in physiological and
pathological events, e.g., intracellular communication [6,7], cell signaling [8], immune response [9,10]
and carcinogenesis [5,11].

In terms of colorectal diseases, EVs appear to be involved in IBD pathogenesis [12] as well as
CRC progression [13]. Depending on their cellular origin, EVs carry a selectively packaged cargo of
DNA, mRNA, miRNA, lipids, metabolites and proteins [14]. The latest mediate the greater part of
biological events in cells and are considered as promising biomarker source for various pathological
states [13,15–17]. The main challenges for EV’s clinical application are the complex isolation, low level
of standardized pre-processing, and high potential of pre-analytical bias. Examples are the choice
of anticoagulant, the incubation time between blood collection and centrifugation as well as sample
storage conditions that are all crucial for EVs’ quantity and quality [18]. In this context, the isolation
process of EVs from blood is the most sensitive issue among all pre-analytical parameters influencing
EVs yield, size, and RNA concentration [19,20].

Thus, the aim of our study was to compare and validate two different EV isolation approaches.
Although many isolation protocols are published and available (e.g., ultrafiltration, size exclusion
chromatography, affinity-based capturing), we decided to study ultracentrifugation as the most
commonly used “gold standard” against the easy to use polymer-based ExoQuick™ precipitation kit.
Next to the possible clinical implementation without laborious work, the latter has been additionally
selected to avoid any contamination with antibodies, significant dilutions of the final sample and other
confounding factors like viscosity. Furthermore, both isolation workflows were used to evaluate the
potential for detecting differentially expressed proteins as biomarkers discerning healthy controls, IBD,
and CRC.

2. Materials and Methods

2.1. Isolation of EVs

Studies were approved by the local Ethics Committees at the University of Lübeck (No. 07-124)
and the Medical Faculty of the Christian-Albrechts-University of Kiel (A110/99). After signed informed
consent, peripheral blood of clinical controls with neither oncological nor inflammatory bowel disease
(n = 12) and patients with either IBD (n = 18) or sporadic colorectal cancer (n = 18) were collected based
on standard operation procedures (SOPs) using a hospital-based biobank infrastructure (Supplementary
Table S1). Serum was obtained from clotted venous blood samples by centrifugation at 2000× g for
10 min and stored either at −80 ◦C or in the gas-phase of liquid nitrogen at a temperature of −160 ◦C.



J. Clin. Med. 2020, 9, 1429 3 of 14

To ensure sufficient protein amounts of EVs, serum samples were pooled by mixing equal volumes
of six individuals (1 mL) from the same group per pool (Supplementary Table S1). The pools were
divided into two aliquots that were used for EV isolation by ultracentrifugation (2 × 250 µL) or a
commercially available, polymer-based precipitation kit (500 µL, ExoQuick™, System Biosciences,
Palo Alto, CA, USA). For differential ultracentrifugation, the serum samples were pre-centrifuged at
13,000× g for 10 min and at 100,000× g for 60 min at 4 ◦C. For EV polymer-based precipitation by the
ExoQuick™ kit (System Biosciences, Palo Alto, CA, USA), the isolation was carried out according to
the manufacturer’s protocol. EV pellets and supernatants obtained by both methods were stored at
−80 ◦C until further analysis.

2.2. EVs Protein Enrichment and Purification

EV pellets from ultracentrifugation and ExoQuick™ precipitation were resuspended in 1.4 mL 1x
PBS buffer. To reduce the concentration of abundant serum proteins, samples were treated with the
ProteoMiner™Protein Enrichment Kit (Bio-Rad Laboratories, Hercules, CA, USA). Each sample (150µL)
with and without ProteoMiner™ enrichment was diluted with 150 µL of sample preparation buffer
[8 M urea, 4% (w/v) CHAPS, 2% (v/v) carrier ampholytes (pH 4-7), 40 mM DTT]. To achieve complete
lysis, samples were incubated for 3h at room temperature including three integrated freeze-thaw cycles
in liquid nitrogen every 60 min. Disturbing ionic contaminants such as detergents, lipids, and phenolic
compounds, protein samples were treated with ReadyPrep™ 2-D Cleanup Kit (Bio-Rad Laboratories)
as specified by the manufacturer.

2.3. Two-Dimensional Multiplex Fluorescence Gel Electrophoresis (2D-DIGE)

Total protein concentration in samples was determined using the fluorescence-based EZQ™
Protein Quantitation Kit (Life Technologies, Carlsbad, CA, USA). A total of 50 µg of each protein sample
and a pooled internal standard were labelled with the fluorescence-based Refraction-2D™ Labeling Kit
(NH DyeAGNOSTICS, Halle, Germany) according to the manufacturer’s protocol. One hundered and
fifty µg of protein per gel (2 × 50 µg sample plus 50 µg internal standard) were diluted with rehydration
sample buffer to a final volume of 450 µL and applied to immobilized pH gradient (IPG) gel strips with
a pH range 4-7 by means of an active sample in-gel rehydration approach under gentle voltage (50 V,
6 h and 60 V, 11 h). Isoelectric focusing (IEF) was carried out in a Protean® i12TM IEF cell (Bio-Rad
Laboratories) at 20 ◦C reaching approximately 57,700 Vh. After IEF, the IPG strips were immediately
equilibrated for 2 × 15 min in a premade buffer system containing tris-tricine/SDS (pH 6.9) (Buffer Kit
for 2D HPE™ Gels, SERVA Electrophoresis, Heidelberg, Germany). To reduce S-S bonds and alkylate
free thiols, 2% (w/v) DTT was included to the buffer in the first and 2.5% (w/v) IAA in the second
equilibration step. The horizontal second dimension (HPE™ FlatTop Tower, SERVA Electrophoresis)
was carried out by SDS-PAGE on precast plastic-backed 12.5% acrylamide gels (2DHPE™ Large Gel
NF 12.5% Kit, 0.65 × 200 × 255 mm, SERVA Electrophoresis). Gel-imaging, gel analysis and mass
spectrometric analysis for spot identification were carried out as described previously [21].

2.4. Multiplex Fluorescence-Based Western Blot Analysis

The protein gelsolin (GSN) was identified by 2D-DIGE with subsequent MS and further validated
by quantitative western blot [22]. Briefly, 5 µg of each protein sample and a pooled internal standard,
used to normalize potential gel-to-gel variations, were labeled with T-Rex Protein Labeling Kit (NH
DyeAGNOSTICS). EVs proteins were separated on precast 4–15% polyacrylamide gels (Criterion™
TGX™ Protein Gel, Bio-Rad Laboratories). After SDS-PAGE, separated proteins were electroblotted
onto a PVDF membrane (Immobilon®-FL PVDF, 0.45 µm, Merck KGaA, Darmstadt, Germany) using
a Trans-Blot® Turbo™ Transfer System (Bio-Rad Laboratories). The membrane was blocked and
incubated with primary antibodies against gelsolin (GSN, 1:1000 rabbit monoclonal antibody, clone
D9W8Y, Cell Signaling, Danvers, MA, USA) in 2% blocking buffer at 4 ◦C overnight. Afterwards,
blots were incubated for 1 h at room temperature with Cy3-conjugated goat-anti-rabbit secondary
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antibodies (Amersham ECL™Plex CyDye-Conjugated Antibodies, GE Healthcare, Chicago, IL, USA)
diluted 1:2500 in 2% blocking buffer. Final protein fluorescence visualization was carried out with a
Typhoon™ FLA 9000 laser scanner (GE Healthcare). Densitometric analyses of loaded total protein
and antibody-targeted protein bands were performed using the ImageQuant™ TL software (GE
Healthcare). Each specific antibody-targeted protein band (Cy3 channel detection) was first normalized
against the loaded total protein volume value (Cy5 channel detection) of the corresponding EV sample
(Cy3/Cy5 ratio).

3. Results

The aim of our study was to compare and validate two different EV isolation approaches
(ultracentrifugation vs. ExoQuick™) on the proteomic level by two-dimensional gel electrophoresis
and mass spectrometry. While ultracentrifugation is usually regarded as the “golden standard” for
EVs’ isolation and primarily based on the size of extracellular particles, the polymer-based isolation by
the ExoQuick™ kit uses a polymer solution which creates a polymer network allowing the separation
of EVs by low-speed centrifugation.

3.1. EV Protein Profile Depending on Isolation Method

While 2D-DIGE resolved 750 protein spots in gels of EV pellets without ProteoMiner™ enrichment,
936 protein spots were detected in ProteoMiner™ enriched EV pellets isolated by ultracentrifugation or
ExoQuick™ (Supplementary Figure S2). Due to the higher resolution, all further analyses were carried
out using ProteoMiner™-enriched EVs. In order to check for possible contamination of EVs with serum
derived proteins, protein profiles obtained for isolated EVs and the corresponding serum supernatants
were compared. Unsupervised cluster analysis of all detected 936 protein spots resulted in distinct
group clustering of EV proteins and supernatant proteins for both, being isolated by ultracentrifugation
(Figure 1A) or ExoQuick™ precipitation (Figure 1B).

Hierarchical cluster analysis of all 936 protein spots revealed two major clusters for both
ultracentrifugation and ExoQuick™ isolation (Figure 1 and Supplementary Figure S3). 226 EV
protein spots overlapped between two isolation approaches. Protein spots determined for either
ultracentrifugation or ExoQuick™ as supernatant-relevant were considered to be serum contaminants
and were thus excluded from the following analysis.

Subsequent comparison between both isolation protocols revealed in total 93 proteoforms that were
differently expressed (p < 0.05 & q < 0.05) resulting in a distinct group clustering by a supervised PCA
(Figure 2). While the levels of 56 out of 93 protein spots were significantly increased in ultracentrifuged
EV pellets, 37 protein spots presented higher protein levels in ExoQuick™-EV pellets.
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3.2. Mass Spectrometry & Pathway Analyses

All 93 EV pellet protein spots found to be significantly different between ultracentrifugation and
ExoQuick™were picked for subsequent mass spectrometric analysis. Hereof, 39 (42%) protein spots
were identified by Mascot database representing 21 protein identities (Table 1).

Table 1. Number of differently expressed as well as identified spots in two- and three- group comparison
of EV pellet samples isolated by ultracentrifugation and ExoQuick™.

Ultracentrifugation
(UC) ExoQuick™ Overlapped Protein Spots

Differentially
Expressed
(p < 0.05)

Spots

Identified
Spots

Differentially
Expressed
(p < 0.05)

Spots

Identified
Spots

Total
Number

Identified
Spots

Controls vs IBDs 31 9 18 9 7 5
Controls vs. CRC 62 16 21 4 8 3

IBDs vs. CRCs 14 5 17 5 7 3
Controls vs. IBDs

vs. CRCs 32 10 26 11 8 6

Except for immunoglobulin mu heavy chain disease protein (MUCB) and zinc finger protein 705A
(ZNF705A), all identities were reported as human exosome proteins. Overall analysis of identified
protein spots revealed that 25 (AFM, A2M, C4BPA, CFH, HP, IGKC, MUCB, ITIH4, KRT2, PON1,
ZNF705A) and 14 (SERPINC1, CD5L, C1R, C6, IGHM, GC) spots to be significantly higher expressed
(p < 0.05) in ultracentrifuged and ExoQuick EVs, respectively (Table 2).
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Table 2. Summary of identified EV proteins using MALDI-TOF/TOF-MS.

Spot
No. Protein Identity Gene

Symbol
Accession

No.
MW

[kDa]a pIa MW
[kDa]b pIb

Mascot
Score

(MS/MS)

Sequence
Coverage

[%]

UC vs.
Exo

(Pellets)

Ctrl.
vs.

IBD
(UC)

Ctrl.
vs.

CRC
(UC)

IBD.
vs.

CRC
(UC)

Ctrl. vs.
IBD vs.

CRC
(UC)

Ctrl.
vs.

IBD
(Exo)

Ctrl.
vs.

CRC
(Exo)

IBD.
vs.

CRC
(Exo)

Ctrl. vs.
IBD vs.

CRC
(Exo)

1 Afamin AFM P43652 139 5.19 69.0 5.6 61.9 13.7 ↓ ↓ ↓

2 Alpha-2-macroglobulin A2M P01023 186 6.24 163.2 6.0 145.4 3.5 ↓ ↓ ↓ ↓ ↓ ↓ ↓

3 A2M 186 6.19 86.2 24.2 ↓

4 A2M 186 6.28 131.0 22.7 ↓ ↓ ↓ ↓ ↓ ↓

5 A2M 186 6.32 89.4 1.9 ↓ ↓ ↓ ↓ ↓ ↓

6 A2M 186 6.14 86.4 1.9 ↓ ↓

7 A2M 185 6.41 85.6 19.8 ↓ ↓ ↓ ↓ ↓ ↓

8 Antithrombin-III SERPINC1 P01008 118 5.32 52.6 6.3 72.4 3.0 ↑ ↓ ↓

9 C4b-binding protein alpha chain C4BPA P04003 124 6.55 67.0 7.9 97.0 34.2 ↓

10 C4BPA 71 5.22 127.0 35.3 ↓ ↓ ↓

11 CD5 antigen-like CD5L O43866 65 5.60 38.1 5.2 70.8 25.1 ↑

12 Complement C1r subcomponent C1R P00736 65 5.36 80.1 5.8 79.9 3.7 ↑

13 Complement C4-B C4B P0C0L5 57 4.29 192.6 6.9 72.0 0.7 ↑ ↑ ↑ ↑

14 C4B 56 4.73 72.9 1.5 ↓ ↑

15 Complement component C6 C6 P13671 170 6.46 104.7 6.4 210 37.4 ↑ ↓

16 C6 169 6.53 138.0 33.4 ↑ ↓

3 Complement factor H CFH P08603 186 6.19 139.0 6.2 56.1 30.8 ↓

17 CFH 186 6.01 176.0 40.1 ↓

18 Gelsolin GSN P06396 141 6.32 85.6 5.9 70.2 2.8 ↑ ↓ ↓ ↓

19 GSN 140 6.34 59.1 22.0 ↑ ↓ ↓ ↓ ↓ ↓

20 GSN 141 6.23 92.0 19.6 ↑ ↓ ↓

14 Haptoglobin HP P00738 56 4.73 45.2 6.1 90.6 30.5 ↓ ↑

21 Ig alpha-1 chain C region IGHA1 P01876 80 6.29 37.6 6.1 118.0 47.9 ↓

22 IGHA1 107 5.61 97.0 40.8 ↓

23 IGHA1 116 5.30 64.8 33.7 ↑ ↓ ↓

24 IGHA1 108 6.62 61.9 46.5 ↑

25 IGHA1 105 6.02 37.6 6.1 184.0 56.9 ↓

26 IGHA1 105 6.47 60.6 18.7 ↓

27 Ig alpha-2 chain C region IGHA2 P01877 107 5.74 36.5 5.7 244.0 8.5 ↓ ↓ ↑ ↓

25 IGHA2 105 6.02 118.0 40.3 ↓

28 IGHA2 104 6.20 92.1 5.0 ↓

21 IGHA2 80 6.29 61.9 36.2 ↓

29 IGHA2 106 5.80 80.9 22.4 ↓ ↓

22 IGHA2 107 5.61 66.2 31.5 ↓

23 IGHA2 116 5.30 71.4 5.0 ↑ ↓ ↓

8 IGHA2 118 5.32 87.3 5.0 ↑

30 Ig kappa chain C region IGKC P01834 24 6.39 11.6 5.5 89.8 32.1 ↓

31 IGKC 24 6.60 11.6 5.5 92.6 34.9 ↓

32 Ig mu chain C region IGHM P01871 60 6.26 49.3 6.4 57.7 13.3 ↑ ↓ ↓
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Table 2. Cont.

Spot
No. Protein Identity Gene

Symbol
Accession

No.
MW

[kDa]a pIa MW
[kDa]b pIb

Mascot
Score

(MS/MS)

Sequence
Coverage

[%]

UC vs.
Exo

(Pellets)

Ctrl.
vs.

IBD
(UC)

Ctrl.
vs.

CRC
(UC)

IBD.
vs.

CRC
(UC)

Ctrl. vs.
IBD vs.

CRC
(UC)

Ctrl.
vs.

IBD
(Exo)

Ctrl.
vs.

CRC
(Exo)

IBD.
vs.

CRC
(Exo)

Ctrl. vs.
IBD vs.

CRC
(Exo)

33 IGHM 129 6.31 105.5 9.7 ↑ ↓ ↓ ↓ ↓ ↓

34 Ig mu heavy chain disease
protein* MUCB* P04220* 67 6.28 43.0 5.0 157.4 3.3 ↓ ↓ ↓

35 MUCB* 141 6.55 81.0 2.8 ↓ ↓ ↓

36 Inter-alpha-trypsin inhibitor
heavy chain H4 ITIH4 Q14624 168 5.11 103.3 6.5 76.1 17.8 ↓ ↑ ↑ ↑

37 Keratin, type II cytoskeletal 2 KRT2 P35908 27 5.15 65.4 8.9 68.8 35.7 ↓

14 Serum paraoxonase/arylesterase 1 PON1 P27169 56 4.73 39.7 5.0 94.9 4.5 ↓ ↑

38 Vitamin D-binding protein GC P02774 90 5.29 52.9 5.3 203.0 62.2 ↑ ↓ ↓ ↓

39 Zinc finger protein 705A ZNF705A Q6ZN79 41 6.43 34.7 10.3 57.3 26.3 ↓

39 protein spots significantly different expressed (t-test, p < 0.05) between EV samples, obtained with ultracentrifugation (UC) and ExoQuick™ (Exo). Arrows indicate significant protein
down- (↓) or upregulation (↑) in the latter sample of each comparison (t-test, p < 0.05 and 1-way ANOVA, p < 0.05). a observed values, b theoretical values (UniProt database). Contr.,
control; CRC, colorectal cancer; IBD, inflammatory Bowel disease. * replaced by UniProt for P01871.
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3.3. Potential Diagnostic Power of EV Proteins

The two-group comparison between clinical controls and IBD samples revealed 31 spots for
ultracentrifugation and 18 spots for ExoQuick™ isolation to be differentially expressed. The analysis
of clinical controls and CRC samples showed 62 and 21 differentially regulated proteoforms for
ultracentrifugation and ExoQuick™, respectively, with an overlap of eight protein spots. Two distinct
proteins (GSN and A2M) were subsequently identified. IBD and CRC samples were separated by
32 and 26 differently expressed spots after ultracentrifugation or ExoQuick™ with an overlap of
seven protein spots in total. Independent of the EV isolation method, PCA analyses revealed distinct
between-group separations (Figure 3).
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3.4. Validation of Target Proteins by Fluorescence-Based Western Blot

Based on the 2-DIGE evaluation of different isolation approaches, availability of antibodies,
exosome-specific molecular function, GSN was selected for downstream validation by multiplex
fluorescence-based Western blot analysis. Gelsolin protein level was significantly higher in samples
obtained with ExoQuick™ compared to ultracentrifugation (p = 0.0006) (Figure 4).
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secondary antibody (A). Cy5 total protein signals within each lane were used for normalization
(Cy3/Cy5 ratio). Based on an internal standard (IS), adjusted relative protein level calculation and
statistical analysis were performed (B).

However and e.g., due to small samples size as well as specific isoform detection of the used
antibody, western blot did not show any significant differences between controls, IBDs and CRCs
groups (Supplementary Figure S4).
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4. Discussion

Although cancer biomarker discovery based on extracellular vesicles (EVs) has become a popular
research field, it is highly restricted by challenges in EVs isolation and characterization. Current
isolation methods differ in terms of extraction efficiency as well as quality and purity of the obtained
EVs [19,23]. Depending on the applied isolation approach, the obtained mixture of EVs’ subpopulations
may strongly differ thus affecting sample quality in terms of macromolecule content. In turn, such
variations in sample quality is crucial for the reliability and validity of research findings. Moreover, a
wide diversity of existing EVs isolation protocols may strongly interfere with verification, comparison,
and analysis of the data obtained by different research teams. With the background that the acquisition
of EV fractions still remains technically challenging [24], we compared two commonly used approaches
for EV isolation on the proteomic level using clinical cohorts of healthy volunteers, clinical controls
and patients with either IBD or CRC.

Ultracentrifugation is usually regarded as the “golden standard” for EVs’ isolation. However,
the outcome for this approach is highly dependent on centrifugation time and speed, type of rotor as
well as temperature [25]. Moreover, time consuming ultracentrifugation induces the formation of EV
aggregates composed of a mixture of EVs of various phenotypes and morphologies [26]. On the other
hand, polymer-based isolation using ExoQuick™ isolation kit is another widely used technique. It is
based on mixing the sample with a polymer solution which, at specific salt conditions and temperature,
creates a polymer network allowing the isolation of EVs by low-speed centrifugation [27]. This method
is simple, fast, and requires as much as 250 µl of serum. Yet, it is also cost-intensive. It allows for
a greater yield of the EVs in comparison with ultracentrifugation but with a lower purity and thus
decreased EV specificity [19]. ExoQuick™ samples contain a high portion of salts, polymer and
other contaminants (including lipoproteins) especially from serum samples [23,28]. Additionally,
incompatibilities for exosome specific protein marker expression due to sample preparation were
reported after assessing EV samples with downstream validation approaches [29].

Quantitative differences between serum-derived EVs obtained by ultracentrifugation and
ExoQuick™ were observed in a distinct PCA group clustering based on 93 (~10%) significant different
expressed spots. A total of 39 EV protein spots were identified which are generally involved in immune
response, acute inflammatory response, defense response, cytoskeleton organization, and vitamin
transport processes. Interestingly and despite the differences in protein expression, both isolation
approaches allowed distinguishing healthy and clinical controls from patients with IBD and CRC.
Inter-group comparison between healthy controls and patients with IBD and sporadic CRC identified
ten proteins from the ultracentrifugation (i.e., AFM, A2M, C4BPA, C4B, C6, GSN, IGHM/MUCB,
ITIH4, GC, HP) and seven proteins from the ExoQuick™ group (i.e., A2M, C4B, GSN, IGHA1, IGHA2,
IGHM/MUCB, SERPINC1) to be differentially expressed (p < 0.05). Four of those, namely A2M, C4BPA,
IGHM/MUCB, and GSN showed an overlap belonging to both groups.

While A2M acts as a protease inhibitor during blood coagulation and platelet degranulation,
C4BPA binds as a cofactor in the complement activation pathway and IGHM/MUCB serves as a
receptor during humoral immunity. A2M, C4BP and IGHM/MUCB coact in biological processes of
primary defense mechanisms, e.g. regulation of the complement cascade as well as immune response.
In line with our results, it has been shown that decreased protein levels in cancerous samples of
A2M, C4BP and IGHM/MUCB disturb the otherwise protective role of these proteins and may abet
tumor development [30–32]. Although further studies are needed to evaluate the correlation with
patients’ individual characteristics, the protein content of cancer-derived EVs could thus support
minimal-invasive cancer diagnosis and prognosis.

GSN was further selected for western blot validation which confirmed a higher protein level
after ExoQuick™ isolation compared to ultracentrifugation preparation. GSN is an actin-binding
protein that regulates cell growth and motility as well as maintains the integrity of cytoskeletal
structure. GSN have been demonstrated in various tumor cells and tissues [33,34], including colorectal
adenocarcinoma tissue [35], and was exclusively and specifically found within exosomes and not
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in a large size EVs populations like microvesicles and apoptotic bodies [36]. As GSN is further
widely debated as biomarker candidate in different cancers with evidence supporting its contradictory
involvement in both tumor suppression as well as malignant progression [32,35], the reported data
stress the need for strict SOPs research. Both, GSN expression and the global EV protein profiles,
highlight the impact of EVs isolation approaches and thus the challenging use of EVs for the translation
into clinical applications. In line, Abramowicz et al. [37] reviewed that the choice of isolation methods
significantly influence mass spectrometric results and data interpretation.

In conclusion, we demonstrated that EV protein expression is highly dependent on the isolation
approach. On the proteomic level, ultracentrifugation and ExoQuick™ seems to be two complementary
approaches allowing the detection of different proteoforms with different abundance and purity
levels. Thereby, engagement of highly standardized operating procedure for EVs isolation, handling
and analyzing in combination with an increased transparency for data reporting are needed for
implementation of non-invasive EV-based biopsies for cancer diagnostic and prognostic.
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