112 research outputs found

    Tunneling in the self-trapped regime of a two-well Bose-Einstein condensate

    Get PDF
    Starting from a mean-field model of the Bose-Einstein condensate dimer, we reintroduce classically forbidden tunneling through a Bohr-Sommerfeld quantization approach. We find closed-form approximations to the tunneling frequency more accurate than those previously obtained using different techniques. We discuss the central role that tunneling in the self-trapped regime plays in a quantitatively accurate model of a dissipative dimer leaking atoms to the environment. Finally, we describe the prospects of experimental observation of tunneling in the self-trapped regime, both with and without dissipation.We wish to thank Wolfgang Muessel, Markus Oberthaler, Kaspar Sakmann, Andrea Trombettoni, Stephanos Venakides, and Tilman Zibold for helpful discussions. We are also grateful for the hospitality of Joshua E. S. Socolar and the Duke University Physics Department. This work was supported in part by Boston University. D.W. acknowledges support from the Helmholtz Association (Grant No. VH-NG-1025). (Boston University; VH-NG-1025 - Helmholtz Association)First author draf

    Dynamics of entanglement in a dissipative Bose-Hubbard dimer

    Full text link
    We study the connection between the semiclassical phase space of the Bose-Hubbard dimer and inherently quantum phenomena in this model, such as entanglement and dissipation-induced coherence. Near the semiclassical self-trapping fixed points, the dynamics of Einstein-Podolski-Rosen (EPR) entanglement and condensate fraction consists of beats among just three eigenstates. Since persistent EPR entangled states arise only in the neighborhood of these fixed points, our analysis explains essentially all of the entanglement dynamics in the system. We derive accurate analytical approximations by expanding about the strong-coupling limit; surprisingly, their realm of validity is nearly the entire parameter space for which the self-trapping fixed points exist. Finally, we show significant enhancement of entanglement can be produced by applying localized dissipation.We thank Luca d'Alessio, Pjotrs Gri. sons, and especially Anatoli Polkovnikov for helpful discussions. This work was supported in part by Boston University, by the US National Science Foundation under Grant No. PHYS-1066293, and by a grant of the Max Planck Society to the MPRG Network Dynamics. H. H. acknowledges support by the German Research Foundation under Grant No. HE 6312/1-1. We are also grateful for the hospitality of the Aspen Center for Physics. (Boston University; PHYS-1066293 - US National Science Foundation; Max Planck Society; HE 6312/1-1 - German Research Foundation)First author draf

    Global Phase Space of Coherence and Entanglement in a double-well BEC

    Full text link
    Ultracold atoms provide an ideal system for the realization of quantum technologies, but also for the study of fundamental physical questions such as the emergence of decoherence and classicality in quantum many-body systems. Here, we study the global structure of the quantum dynamics of bosonic atoms in a double-well trap and analyze the conditions for the generation of many-particle entanglement and spin squeezing which have important applications in quantum metrology. We show how the quantum dynamics is determined by the phase space structure of the associated mean-field system and where true quantum features arise beyond this `classical' approximation

    Protein dynamics in the reductive activation of a B12-containing enzyme

    Get PDF
    B12-dependent proteins are involved in methyl transfer reactions ranging from the biosynthesis of methionine in humans to the formation of acetyl-CoA in anaerobic bacteria. During their catalytic cycle, they undergo large conformational changes to interact with various proteins. Recently, the crystal structure of the B12-containing corrinoid iron–sulfur protein (CoFeSP) in complex with its reductive activator (RACo) was determined, providing a first glimpse of how energy is transduced in the ATP-dependent reductive activation of corrinoid-containing methyltransferases. The thermodynamically uphill electron transfer from RACo to CoFeSP is accompanied by large movements of the cofactor-binding domains of CoFeSP. To refine the structure-based mechanism, we analyzed the conformational change of the B12-binding domain of CoFeSP by pulsed electron–electron double resonance and Förster resonance energy transfer spectroscopy. We show that the site-specific labels on the flexible B12-binding domain and the small subunit of CoFeSP move within 11 Å in the RACo:CoFeSP complex, consistent with the recent crystal structures. By analyzing the transient kinetics of formation and dissociation of the RACo:CoFeSP complex, we determined values of 0.75 μM–1 s–1 and 0.33 s–1 for rate constants kon and koff, respectively. Our results indicate that the large movement observed in crystals also occurs in solution and that neither the formation of the protein encounter complex nor the large movement of the B12-binding domain is rate-limiting for the ATP-dependent reductive activation of CoFeSP by RACo

    Axial Ligation and Redox Changes at the Cobalt Ion in Cobalamin Bound to Corrinoid Iron-Sulfur Protein (CoFeSP) or in Solution Characterized by XAS and DFT

    Get PDF
    A cobalamin (Cbl) cofactor in corrinoid iron-sulfur protein (CoFeSP) is the primary methyl group donor and acceptor in biological carbon oxide conversion along the reductive acetyl-CoA pathway. Changes of the axial coordination of the cobalt ion within the corrin macrocycle upon redox transitions in aqua-, methyl-, and cyano-Cbl bound to CoFeSP or in solution were studied using X-ray absorption spectroscopy (XAS) at the Co K-edge in combination with density functional theory (DFT) calculations, supported by metal content and cobalt redox level quantification with further spectroscopic methods. Calculation of the highly variable pre-edge X-ray absorption features due to core-to-valence (ctv) electronic transitions, XANES shape analysis, and cobalt-ligand bond lengths determination from EXAFS has yielded models for the molecular and electronic structures of the cobalt sites. This suggested the absence of a ligand at cobalt in CoFeSP in α-position where the dimethylbenzimidazole (dmb) base of the cofactor is bound in Cbl in solution. As main species, (dmb)CoIII(OH2), (dmb)CoII(OH2), and (dmb)CoIII(CH3) sites for solution Cbl and CoIII(OH2), CoII(OH2), and CoIII(CH3) sites in CoFeSP-Cbl were identified. Our data support binding of a serine residue from the reductive-activator protein (RACo) of CoFeSP to the cobalt ion in the CoFeSP-RACo protein complex that stabilizes Co(II). The absence of an α-ligand at cobalt not only tunes the redox potential of the cobalamin cofactor into the physiological range, but is also important for CoFeSP reactivation

    Transformation of Medical Diagnostics with Machine Learning by Considering the Example of Atrial Fibrillation Identification

    Get PDF
    The paper addresses the problem of detecting one of the most common cardiac arrhythmias atrial fibrillation with artificial intelligence. The arrhythmia increases the risk of suffering from a stroke massively. Because of this, it is essential to detect atrial fibrillation early. As the arrhythmia occurs in short sequences, it is only possible to detect the disease in long-term measurements for example with electrocardiography. All common current detection techniques are calculating the R-R intervals with variations of the root mean square of successive differences. Because this approach is inflexible and expensive, a major hospital in Germany suggests the implementation of an artificial intelligence solution for atrial fibrillation detection. The aim of the paper is to study the feasibility of atrial fibrillation detection with artificial intelligence in the clinical setting of the hospital

    the influence of auditory feedback and deep brain stimulation

    Get PDF
    Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC) are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome) of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback. As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS) on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS) due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long- range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS. Overall, the present investigations demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN-DBS, which suggests that cortico-basal ganglia-thalamocortical circuits play a role in the modulation of the serial correlations of timing fluctuations exhibited in skilled musical performance

    The Nature and Perception of Fluctuations in Human Musical Rhythms

    Get PDF
    Although human musical performances represent one of the most valuable achievements of mankind, the best musicians perform imperfectly. Musical rhythms are not entirely accurate and thus inevitably deviate from the ideal beat pattern. Nevertheless, computer generated perfect beat patterns are frequently devalued by listeners due to a perceived lack of human touch. Professional audio editing software therefore offers a humanizing feature which artificially generates rhythmic fluctuations. However, the built-in humanizing units are essentially random number generators producing only simple uncorrelated fluctuations. Here, for the first time, we establish long-range fluctuations as an inevitable natural companion of both simple and complex human rhythmic performances. Moreover, we demonstrate that listeners strongly prefer long-range correlated fluctuations in musical rhythms. Thus, the favorable fluctuation type for humanizing interbeat intervals coincides with the one generically inherent in human musical performances
    • …
    corecore