382 research outputs found

    Magnetic field strength influence on the reactive magnetron sputter deposition of Ta2O5

    Full text link
    Reactive magnetron sputtering enables the deposition of various thin films to be used for protective as well as optical and electronic applications. However, progressing target erosion during sputtering results in increased magnetic field strengths at the target surface. Consequently, the glow discharge, the target poisoning, and hence the morphology, crystal structure and stoichiometry of the prepared thin films are influenced. Therefore, these effects were investigated by varying the cathode current Im between 0.50 and 1.00 A, the magnetic field strength B between 45 and 90 mT, and the O2/(Ar+O2) flow rate ratio between 0 and 100%. With increasing oxygen flow ratio a sub-stoichiometric TaOx oxide forms at the metallic Ta target surface which further transfers to a non-conductive tantalum pentoxide Ta2O5, impeding a stable DC glow discharge. These two transition zones (from Ta to TaOx and from TaOx to Ta2O5) shift to higher oxygen flow rates for increasing target currents. Contrary, increasing the magnetic field strength (e.g., due to sputter erosion) mainly shifts the TaOx to Ta2O5 transition to lower oxygen flow rates while marginally influencing the Ta to TaOx transition. To allow for a stable DC glow discharge (and to suppress the formation of non-conductive Ta2O5 at the target) even at a flow rate ratio of 100% either a high target current (Im >= 1 A) or a low magnetic field strength (B <= 60 mT) is necessary. These conditions are required to prepare stoichiometric and fully crystalline Ta2O5 films. Our investigations clearly demonstrate the importance of the magnetic field strength, which changes during sputter erosion, on the target poisoning and the resulting film quality.Comment: 10 pages, 9 figures, 1 tabl

    Macroscopic Elastic Properties of Textured ZrN--AlN Polycrystalline Aggregates: From Ab initio Calculations to Grain-Scale Interactions

    Full text link
    Despite the fast development of computational materials modelling, theoretical description of macroscopic elastic properties of textured polycrystalline aggregates starting from basic principles remains a challenging task. In this communication we use a supercell-based approach to obtain the elastic properties of random solid solution cubic ZrAlN system as a function of the metallic sublattice composition and texture descriptors. The employed special quasi-random structures are optimised not only with respect to short range order parameters, but also to make the three cubic directions [100][1\,0\,0], [010][0\,1\,0], and [001][0\,0\,1] as similar as possible. In this way, only a small spread of elastic constants tensor components is achieved and an optimum trade-off between modelling of chemical disorder and computational limits regarding the supercell size is achieved. The single crystal elastic constants are shown to vary smoothly with composition, yielding x0.4x\approx0.4-0.5 an alloy constitution with an almost isotropic response. Consequently, polycrystals with this composition are suggested to have Young's modulus independent on the actual microstructure. This is indeed confirmed by explicit calculations of polycrystal elastic properties, both within the isotropic aggregate limit, as well as with fibre textures with various orientations and sharpness. It turns out, that for low AlN mole fractions, the spread of the possible Young's moduli data caused by the texture variation can be larger than 100 GPa. Consequently, our discussion of Young's modulus data of cubic ZrAlN contains also the evaluation of the texture typical for thin films.Comment: 10 pages, 6 figures, 3 table

    Towards predictive modelling of near-edge structures in electron energy loss spectra of AlN based ternary alloys

    Get PDF
    Although electron energy loss near edge structure analysis provides a tool for experimentally probing unoccupied density of states, a detailed comparison with simulations is necessary in order to understand the origin of individual peaks. This paper presents a density functional theory based technique for predicting the N K-edge for ternary (quasi-binary) nitrogen alloys by adopting a core hole approach, a methodology that has been successful for binary nitride compounds. It is demonstrated that using the spectra of binary compounds for optimising the core hole charge (0.35e0.35\,\mathrm{e} for cubic Ti1x_{1-x}Alx_xN and 0.45e0.45\,\mathrm{e} for wurtzite Alx_xGa1x_{1-x}N), the predicted spectra evolutions of the ternary alloys agree well with the experiments. The spectral features are subsequently discussed in terms of the electronic structure and bonding of the alloys.Comment: 11 pages, 9 figures, 1 tabl

    Graphite under uniaxial compression along the c axis: A parameter to relate out-of-plane strain to in-plane phonon frequency

    Get PDF
    Stacking graphene sheets forms graphite. Two in-plane vibrational modes of graphite, E1u and E2g(2), are derived from graphene E2g mode, the shifts of which under compression are all considered as results of in-plane bond shortening. Values of Gruneisen parameter have been reported to quantify such relation. However, the reason why the shift rates of these three modes with pressure differ is unclear. In this work, we introduce a new parameter to quantify the contribution of out-of-plane strain to the in-plane vibrational frequencies, suggesting that the compression of \pi-electrons plays a non-negligible part in both graphite and graphene under high pressure.Comment: 8 pages, 5 figures, 1 tabl

    Why, what, and how? case study on law, risk, and decision making as necessary themes in built environment teaching

    Get PDF
    The paper considers (and defends) the necessity of including legal studies as a core part of built environment undergraduate and postgraduate curricula. The writer reflects upon his own experience as a lawyer working alongside and advising built environment professionals in complex land remediation and site safety management situations in the United Kingdom and explains how themes of liability, risk, and decision making can be integrated into a practical simulation in order to underpin more traditional lecture-based law teaching. Through reflection upon the writer's experiments with simulation-based teaching, the paper suggests some innovations that may better orientate law teaching to engage these themes and, thereby, enhance the relevance of law studies to the future needs of built environment professionals in practice.</p

    Developing autonomous learning in first year university students using perspectives from positive psychology

    Get PDF
    Autonomous learning is a commonly occurring learning outcome from university study, and it is argued that students require confidence in their own abilities to achieve this. Using approaches from positive psychology, this study aimed to develop confidence in first‐year university students to facilitate autonomous learning. Psychological character strengths were assessed in 214 students on day one at university. Two weeks later their top three strengths were given to them in study skills modules as part of a psycho‐educational intervention designed to increase their self‐efficacy and self‐esteem. The impact of the intervention was assessed against a control group of 40 students who had not received the intervention. The results suggested that students were more confident after the intervention, and that levels of autonomous learning increased significantly compared to the controls. Character strengths were found to be associated with self‐efficacy, self‐esteem and autonomous learning in ways that were theoretically meaningful

    Mesh Refinement for Anisotropic Diffusion in Magnetized Plasmas

    Full text link
    Highly accurate simulation of plasma transport is needed for the successful design and operation of magnetically confined fusion reactors. Unfortunately, the extreme anisotropy present in magnetized plasmas results in thin boundary layers that are expensive to resolve. This work investigates how mesh refinement strategies might reduce that expense to allow for more efficient simulation. It is first verified that higher order discretization only realizes the proper rate of convergence once the mesh resolves the thin boundary layer, motivating the focusing of refinement on the boundary layer. Three mesh refinement strategies are investigated: one that focuses the refinement across the layer by using rectangular elements with a ratio equal to the boundary layer width, one that allows for exponential growth in mesh spacing away from the layer, and one adaptive strategy utilizing the established Zienkiewicz and Zhu error estimator. Across 4 two-dimensional test cases with high anisotropy, the adaptive mesh refinement strategy consistently achieves the same accuracy as uniform refinement using orders of magnitude less degrees of freedom. In the test case where the magnetic field is aligned with the mesh, the other refinement strategies also show substantial improvement in efficiency. This work also includes a discussion generalizing the results to larger magnetic anisotropy ratios and to three-dimensional problems. It is shown that isotropic mesh refinement requires degrees of freedom on the order of either the layer width (2D) or the square of the layer width (3D), whereas anisotropic refinement requires a number on the order of the log of layer width for all dimensions. It is also shown that the number of conjugate gradient iterations scales as a power of layer width when preconditioned with algebraic multigrid, whereas the number is independent of layer width when preconditioned with ILU

    Tunable optoelectronic and ferroelectric properties in Sc-based III-nitrides

    Full text link
    Sc-based III-nitride alloys were studied using Density Functional Theory with special quasi-random structures and were found to retain wide band gaps which stay direct up to x = 0.125 (ScxAl1-xN) and x = 0.375 (ScxGa1-xN). Epitaxial strain stabilization prevents spinodal decomposition up to x = 0.3 (ScxAl1-xN on GaN) and x = 0.24 (ScxGa1-xN on GaN), with critical thicknesses for strain relaxation ranging from 3 nm to near-infinity. The increase in Sc content introduces compressive in-plane stress with respect to AlN and GaN, and leads to composition- and stress-tunable band gaps and polarization, and ultimately introduces ferroelectric functionality in ScxGa1-xN at x = 0.625.Comment: 7 figures, submitte
    corecore